In this paper, we study a postprocessing procedure for improving accuracy of the finite volume element approximations of semilinear parabolic problems. The procedure amounts to solve a source problem on a coarser grid and then solve a linear elliptic problem on a finer grid after the time evolution is finished. We derive error estimates in the
Mots-clés : error estimates, finite volume elements, postprocessing, semilinear parabolic problems
@article{M2AN_2009__43_5_957_0, author = {Yang, Min and Bi, Chunjia and Liu, Jiangguo}, title = {Postprocessing of a finite volume element method for semilinear parabolic problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {957--971}, publisher = {EDP-Sciences}, volume = {43}, number = {5}, year = {2009}, doi = {10.1051/m2an/2009017}, mrnumber = {2559740}, zbl = {1176.65102}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2009017/} }
TY - JOUR AU - Yang, Min AU - Bi, Chunjia AU - Liu, Jiangguo TI - Postprocessing of a finite volume element method for semilinear parabolic problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 957 EP - 971 VL - 43 IS - 5 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2009017/ DO - 10.1051/m2an/2009017 LA - en ID - M2AN_2009__43_5_957_0 ER -
%0 Journal Article %A Yang, Min %A Bi, Chunjia %A Liu, Jiangguo %T Postprocessing of a finite volume element method for semilinear parabolic problems %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 957-971 %V 43 %N 5 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2009017/ %R 10.1051/m2an/2009017 %G en %F M2AN_2009__43_5_957_0
Yang, Min; Bi, Chunjia; Liu, Jiangguo. Postprocessing of a finite volume element method for semilinear parabolic problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 5, pp. 957-971. doi : 10.1051/m2an/2009017. https://www.numdam.org/articles/10.1051/m2an/2009017/
[1] Sobolev Spaces. Academic Press, New York (2003). | MR | Zbl
and ,[2] Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 107 (2007) 177-198. | MR | Zbl
and ,[3] The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 2nd edn., (2002). | MR | Zbl
and ,[4] On the finite volume element method. Numer. Math. 58 (1991) 713-735. | MR | Zbl
,[5] The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | MR | Zbl
, and ,[6] Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42 (2005) 2496-2521. | MR | Zbl
, and ,[7] Error estimates for a finite volume element method for elliptic PDEs in nonconvex polygonal domains. SIAM J. Numer. Anal. 42 (2004) 1932-1958. | MR | Zbl
and ,[8] Error estimates for a finite volume element method for parabolic equations in convex polygonal domains. Numer. Meth. PDEs 20 (2004) 650-674. | MR | Zbl
, and ,[9] Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math. 90 (2002) 459-486. | MR | Zbl
and ,
[10] Error estimates in
[11]
[12] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[13] A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35 (1998) 435-452. | MR | Zbl
, and ,[14] Postprocessing the linear finite element method. SIAM J. Numer. Anal. 40 (2002) 805-819. | MR | Zbl
and ,[15] On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2002) 1865-1888. | MR | Zbl
, and ,[16] Finite Volume Methods: Handbook of Numerical Analysis. North-Holland, Amsterdam (2000). | MR | Zbl
, and ,[17] Error estimates of a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36 (1999) 1528-1548. | MR | Zbl
, , and ,[18] Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal. 35 (1998) 941-972. | MR | Zbl
, and ,[19] Postprocessing the Galerkin method: the finite element case. SIAM J. Numer. Anal. 37 (2000) 470-499. | MR | Zbl
and ,[20] Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840. Springer-Verlag, New York (1989). | MR | Zbl
,
[21]
[22] Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000). | MR | Zbl
, and ,[23] Symmetric finite volume discretizations for parabolic problems. Comput. Methods Appl. Mech. Engrg. 192 (2003) 4467-4485. | MR | Zbl
, and ,[24] Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32 (1995) 1170-1184. | MR | Zbl
and ,[25] Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems. J. Comput. Appl. Math. 146 (2002) 373-386. | MR | Zbl
,[26] Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33 (1980) 265-304. | MR | Zbl
, and ,[27] Error estimates for finite volume element methods for convection-diffusion-reaction equations. Appl. Numer. Math. 57 (2007) 59-72. | MR | Zbl
and ,[28] Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68. Springer-Verlag, Berlin (1988). | MR | Zbl
,[29] Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997). | MR | Zbl
,[30] On Galerkin methods in semilinear parabolic problems. SIAM J. Numer. Anal. 12 (1975) 378-389. | MR | Zbl
and ,[31] Postprocessing the finite element method for semilinear parabolic problems. SIAM J. Numer. Anal. 44 (2006) 1681-1702. | MR | Zbl
,[32] A second-order finite volume element method on quadrilateral meshes for elliptic equations. ESAIM: M2AN 40 (2006) 1053-1067. | EuDML | Numdam | MR | Zbl
,[33] A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal. 44 (2006) 183-198. | MR | Zbl
,[34] On domain decomposition algorithms for covolume methods for elliptic problems. Comput. Methods Appl. Mech. Engrg. 196 (2006) 24-32. | MR | Zbl
,Cité par Sources :