Postprocessing of a finite volume element method for semilinear parabolic problems
ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 5, pp. 957-971.

In this paper, we study a postprocessing procedure for improving accuracy of the finite volume element approximations of semilinear parabolic problems. The procedure amounts to solve a source problem on a coarser grid and then solve a linear elliptic problem on a finer grid after the time evolution is finished. We derive error estimates in the L2 and H1 norms for the standard finite volume element scheme and an improved error estimate in the H1 norm. Numerical results demonstrate the accuracy and efficiency of the procedure.

DOI : 10.1051/m2an/2009017
Classification : 65N30, 65N15
Mots-clés : error estimates, finite volume elements, postprocessing, semilinear parabolic problems
Yang, Min  ; Bi, Chunjia  ; Liu, Jiangguo 1

1 Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874, USA.
@article{M2AN_2009__43_5_957_0,
     author = {Yang, Min and Bi, Chunjia and Liu, Jiangguo},
     title = {Postprocessing of a finite volume element method for semilinear parabolic problems},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {957--971},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {5},
     year = {2009},
     doi = {10.1051/m2an/2009017},
     mrnumber = {2559740},
     zbl = {1176.65102},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2009017/}
}
TY  - JOUR
AU  - Yang, Min
AU  - Bi, Chunjia
AU  - Liu, Jiangguo
TI  - Postprocessing of a finite volume element method for semilinear parabolic problems
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2009
SP  - 957
EP  - 971
VL  - 43
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2009017/
DO  - 10.1051/m2an/2009017
LA  - en
ID  - M2AN_2009__43_5_957_0
ER  - 
%0 Journal Article
%A Yang, Min
%A Bi, Chunjia
%A Liu, Jiangguo
%T Postprocessing of a finite volume element method for semilinear parabolic problems
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2009
%P 957-971
%V 43
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2009017/
%R 10.1051/m2an/2009017
%G en
%F M2AN_2009__43_5_957_0
Yang, Min; Bi, Chunjia; Liu, Jiangguo. Postprocessing of a finite volume element method for semilinear parabolic problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 5, pp. 957-971. doi : 10.1051/m2an/2009017. https://www.numdam.org/articles/10.1051/m2an/2009017/

[1] R. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press, New York (2003). | MR | Zbl

[2] C. Bi and V. Ginting, Two-grid finite volume element method for linear and nonlinear elliptic problems. Numer. Math. 107 (2007) 177-198. | MR | Zbl

[3] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, 2nd edn., (2002). | MR | Zbl

[4] Z. Cai, On the finite volume element method. Numer. Math. 58 (1991) 713-735. | MR | Zbl

[5] Z. Cai, J. Mandel and S. Mccormick, The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | MR | Zbl

[6] C. Carstensen, R. Lazarov and S. Tomov, Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer. Anal. 42 (2005) 2496-2521. | MR | Zbl

[7] P. Chatzipantelidis and R.D. Lazarov, Error estimates for a finite volume element method for elliptic PDEs in nonconvex polygonal domains. SIAM J. Numer. Anal. 42 (2004) 1932-1958. | MR | Zbl

[8] P. Chatzipantelidis, R.D. Lazarov and V. Thomée, Error estimates for a finite volume element method for parabolic equations in convex polygonal domains. Numer. Meth. PDEs 20 (2004) 650-674. | MR | Zbl

[9] S.H. Chou and D.Y. Kwak, Multigrid algorithms for a vertex-centered covolume method for elliptic problems. Numer. Math. 90 (2002) 459-486. | MR | Zbl

[10] S.H. Chou and Q. Li, Error estimates in L2, H1 and L in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comp. 69 (2000) 103-120. | MR | Zbl

[11] S.H. Chou, D.Y. Kwak and Q. Li, Lp error estimates and superconvergence for covolume or finite volume element methods. Numer. Meth. PDEs 19 (2003) 463-486. | MR | Zbl

[12] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl

[13] C.N. Dawson, M.F. Wheeler and C.S. Woodward, A two-grid finite difference scheme for nonlinear parabolic equations. SIAM J. Numer. Anal. 35 (1998) 435-452. | MR | Zbl

[14] J. De Frutos and J. Novo, Postprocessing the linear finite element method. SIAM J. Numer. Anal. 40 (2002) 805-819. | MR | Zbl

[15] R.E. Ewing, T. Lin and Y. Lin, On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2002) 1865-1888. | MR | Zbl

[16] R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods: Handbook of Numerical Analysis. North-Holland, Amsterdam (2000). | MR | Zbl

[17] M. Feistauer, J. Felcman, M. Lukáčová-Medvidová and G. Warnecke, Error estimates of a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36 (1999) 1528-1548. | MR | Zbl

[18] B. García-Archilla, J. Novo and E.S. Titi, Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal. 35 (1998) 941-972. | MR | Zbl

[19] B. García-Archilla and E.S. Titi, Postprocessing the Galerkin method: the finite element case. SIAM J. Numer. Anal. 37 (2000) 470-499. | MR | Zbl

[20] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840. Springer-Verlag, New York (1989). | MR | Zbl

[21] A. Lasis and E. Süli, hp-version discontinuous Galerkin finite element method for semilinear parabolic problems. SIAM J. Numer. Anal. 45 (2007) 1544-1569. | MR | Zbl

[22] R. Li, Z. Chen and W. Wu, Generalized Difference Methods for Differential Equations: Numerical Analysis of Finite Volume Methods. Marcel Dekker, New York (2000). | MR | Zbl

[23] X. Ma, S. Shu and A. Zhou, Symmetric finite volume discretizations for parabolic problems. Comput. Methods Appl. Mech. Engrg. 192 (2003) 4467-4485. | MR | Zbl

[24] M. Marion and J.C. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements. SIAM J. Numer. Anal. 32 (1995) 1170-1184. | MR | Zbl

[25] H. Rui, Symmetric modified finite volume element methods for self-adjoint elliptic and parabolic problems. J. Comput. Appl. Math. 146 (2002) 373-386. | MR | Zbl

[26] A.H. Schatz, V. Thomée and L. Wahlbin, Maximum norm stability and error estimates in parabolic finite element equations. Comm. Pure Appl. Math. 33 (1980) 265-304. | MR | Zbl

[27] R.K. Sinha and J. Geiser, Error estimates for finite volume element methods for convection-diffusion-reaction equations. Appl. Numer. Math. 57 (2007) 59-72. | MR | Zbl

[28] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68. Springer-Verlag, Berlin (1988). | MR | Zbl

[29] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997). | MR | Zbl

[30] V. Thomée and L. Wahlbin, On Galerkin methods in semilinear parabolic problems. SIAM J. Numer. Anal. 12 (1975) 378-389. | MR | Zbl

[31] Y. Yan, Postprocessing the finite element method for semilinear parabolic problems. SIAM J. Numer. Anal. 44 (2006) 1681-1702. | MR | Zbl

[32] M. Yang, A second-order finite volume element method on quadrilateral meshes for elliptic equations. ESAIM: M2AN 40 (2006) 1053-1067. | EuDML | Numdam | MR | Zbl

[33] X. Ye, A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal. 44 (2006) 183-198. | MR | Zbl

[34] S. Zhang, On domain decomposition algorithms for covolume methods for elliptic problems. Comput. Methods Appl. Mech. Engrg. 196 (2006) 24-32. | MR | Zbl

Cité par Sources :