Plane wave stability of some conservative schemes for the cubic Schrödinger equation
ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 4, pp. 677-687.

The plane wave stability properties of the conservative schemes of Besse [SIAM J. Numer. Anal. 42 (2004) 934-952] and Fei et al. [Appl. Math. Comput. 71 (1995) 165-177] for the cubic Schrödinger equation are analysed. Although the two methods possess many of the same conservation properties, we show that their stability behaviour is very different. An energy preserving generalisation of the Fei method with improved stability is presented.

DOI : 10.1051/m2an/2009022
Classification : 65M10, 35Q55
Mots clés : finite difference method, stability, energy conservation, nonlinear Schrödinger equation, linearly implicit methods
@article{M2AN_2009__43_4_677_0,
     author = {Dahlby, Morten and Owren, Brynjulf},
     title = {Plane wave stability of some conservative schemes for the cubic {Schr\"odinger} equation},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {677--687},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {4},
     year = {2009},
     doi = {10.1051/m2an/2009022},
     mrnumber = {2542871},
     zbl = {1167.65449},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2009022/}
}
TY  - JOUR
AU  - Dahlby, Morten
AU  - Owren, Brynjulf
TI  - Plane wave stability of some conservative schemes for the cubic Schrödinger equation
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2009
SP  - 677
EP  - 687
VL  - 43
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2009022/
DO  - 10.1051/m2an/2009022
LA  - en
ID  - M2AN_2009__43_4_677_0
ER  - 
%0 Journal Article
%A Dahlby, Morten
%A Owren, Brynjulf
%T Plane wave stability of some conservative schemes for the cubic Schrödinger equation
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2009
%P 677-687
%V 43
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2009022/
%R 10.1051/m2an/2009022
%G en
%F M2AN_2009__43_4_677_0
Dahlby, Morten; Owren, Brynjulf. Plane wave stability of some conservative schemes for the cubic Schrödinger equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 4, pp. 677-687. doi : 10.1051/m2an/2009022. http://archive.numdam.org/articles/10.1051/m2an/2009022/

[1] M.J. Ablowitz and J.F. Ladik, A nonlinear difference scheme and inverse scattering. Studies Appl. Math. 55 (1976) 213-229. | MR | Zbl

[2] H. Berland, B. Owren and B. Skaflestad, Solving the nonlinear Schrödinger equation using exponential integrators. Model. Ident. Control 27 (2006) 201-218.

[3] C. Besse, A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42 (2004) 934-952 (electronic). | MR | Zbl

[4] E. Celledoni, D. Cohen and B. Owren, Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8 (2008) 303-317. | MR | Zbl

[5] A. Durán and J.M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20 (2000) 235-261. | MR | Zbl

[6] Z. Fei, V.M. Pérez-García and L. Vázquez, Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71 (1995) 165-177. | MR | Zbl

[7] E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration, Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics 31. Second Edition, Springer-Verlag, Berlin (2006). | MR | Zbl

[8] A.L. Islas, D.A. Karpeev and C.M. Schober, Geometric integrators for the nonlinear Schrödinger equation. J. Comput. Phys. 173 (2001) 116-148. | MR | Zbl

[9] T. Matsuo and D. Furihata, Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171 (2001) 425-447. | MR | Zbl

[10] T.R. Taha and J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55 (1984) 203-230. | MR | Zbl

[11] J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485-507. | MR | Zbl

Cité par Sources :