The finite element approximation of optimal control problems for semilinear elliptic partial differential equation is considered, where the control belongs to a finite-dimensional set and state constraints are given in finitely many points of the domain. Under the standard linear independency condition on the active gradients and a strong second-order sufficient optimality condition, optimal error estimates are derived for locally optimal controls.
Mots-clés : finite element approximation, optimal control problem, finitely many pointwise state constraints
@article{M2AN_2010__44_1_167_0, author = {Merino, Pedro and Tr\"oltzsch, Fredi and Vexler, Boris}, title = {Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {167--188}, publisher = {EDP-Sciences}, volume = {44}, number = {1}, year = {2010}, doi = {10.1051/m2an/2009045}, mrnumber = {2647757}, zbl = {1191.65076}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2009045/} }
TY - JOUR AU - Merino, Pedro AU - Tröltzsch, Fredi AU - Vexler, Boris TI - Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 167 EP - 188 VL - 44 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2009045/ DO - 10.1051/m2an/2009045 LA - en ID - M2AN_2010__44_1_167_0 ER -
%0 Journal Article %A Merino, Pedro %A Tröltzsch, Fredi %A Vexler, Boris %T Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 167-188 %V 44 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2009045/ %R 10.1051/m2an/2009045 %G en %F M2AN_2010__44_1_167_0
Merino, Pedro; Tröltzsch, Fredi; Vexler, Boris. Error estimates for the finite element approximation of a semilinear elliptic control problem with state constraints and finite dimensional control space. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 1, pp. 167-188. doi : 10.1051/m2an/2009045. http://archive.numdam.org/articles/10.1051/m2an/2009045/
[1] A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23 (1986) 160-169. | Zbl
, , and ,[2] On the approximation of infinite optimization problems with an application to optimal control problems. Appl. Math. Opt. 12 (1984) 15-27. | Zbl
,[3] Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201-229. | Zbl
, and ,[4] Finite element methods in local active control of sound. SIAM J. Control Optim. 43 (2004) 437-465 (electronic). | Zbl
, and ,[5] Perturbation Analysis of Optimization Problems. Springer-Verlag, New York, USA (2000). | Zbl
and ,[6] The Mathematical Theory of Finite Element Methods. Springer, New York, USA (1994). | Zbl
and ,[7] Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993) 993-1006. | Zbl
,[8] Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state contraints. ESAIM: COCV 8 (2002) 345-374. | EuDML | Numdam | Zbl
,[9] Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems. Adv. Comput. Math. 26 (2007) 137-153. | Zbl
,[10] Second order sufficient optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431-1454. | Zbl
and ,[11] Uniform convergence of the FEM. Applications to state constrained control problems. J. Comput. Appl. Math. 21 (2002) 67-100. | Zbl
and ,[12] Optimality conditions for state-constrained PDE control problems with finite-dimensional control space. Control Cybern. (to appear). | Zbl
, , and ,[13] Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 1937-1953. | Zbl
and ,[14] Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, Proc. of ENUMATH 2007, Graz, K. Kunisch, G. Of and O. Steinbach Eds., Springer, Berlin-Heidelberg, Germany (2008) 597-604. | Zbl
and ,[15] Nonlinear Programming: Sequential Unconstrained Minimization Techniques. J. Wiley and Sons, Inc., New York, USA (1968). | Zbl
and ,[16] Eine l1-Fehlerabschätzung diskreter Grundlösungen in der Methode der finiten Elemente. Bonner Math. Schriften 89 (1976) 92-114. | Zbl
and ,[17] Elliptic Partial Differential Equations of Second Order. Springer, Berlin, Germany (1998). | Zbl
and ,[18] Elliptic Problems in Nonsmooth Domains. Pitman, Boston, USA (1985). | Zbl
,[19] A note on quantitative stability results in nonlinear optimization. Seminarbericht 90, Humboldt-Universität zu Berlin, Sektion Mathematik, Germany (1987). | Zbl
,[20] Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002). | Zbl
and ,[21] Linear and Nonlinear Programming. Addison Wesley, Reading, Massachusetts, USA (1984). | Zbl
,[22] Stability of solutions to convex problems of optimization, Lecture Notes Contr. Inf. Sci. 93, Springer-Verlag, Berlin, Germany (1987). | Zbl
,[23] Convergence of approximations to nonlinear optimal control problems, in Mathematical Programming with Data Perturbations, A.V. Fiacco Ed., Lecture Notes to Pure and Applied Mathematics 195, Marcel Dekker, New York, USA (1998) 253-284. | Zbl
, and ,[24] Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Contr. Cybern. 37 (2008) 51-85. | Zbl
,[25] On two numerical methods for state-constrained elliptic control problems. Otim. Meth. Software 22 (2007) 871-899. | Zbl
, and ,[26] Zur -Konvergenz linearer finiter Elemente beim Dirichlet-Problem. Math. Z. 149 (1976) 69-77. | Zbl
,[27] A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44 (2005) 1844-1863. | Zbl
and ,[28] Stability theory for systems of inequalities, II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13 (1976) 497-513. | Zbl
,[29] Strongly regular generalized equations. Math. Oper. Res. 5 (1980) 43-62. | Zbl
,[30] Error estimates for linear-quadratic control problems with control constraints. Optim. Methods Softw. 21 (2006) 121-134. | Zbl
,[31] Interior maximum norm estimates for finite element methods. Math. Comp. 31 (1977) 414-442. | Zbl
and ,[32] Interior maximum-norm estimates for finite element methods, part II. Math. Comp. 64 (1995) 907-928. | Zbl
and ,[33] Optimale Steuerung partieller Differentialgleichungen - Theorie, Verfahren und Anwendungen. Vieweg, Wiesbaden, Germany (2005). | Zbl
,[34] On finite element error estimates for optimal control problems with elliptic PDEs, in The Proceedings of the Conference on Large Scale Scientific Computing, Sozopol, Bulgaria, June 4-8, 2009, Lect. Notes in Comp. Sci., Springer-Verlag (to appear).
,[35] Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49-62. | Zbl
and ,Cité par Sources :