The goal of our paper is to introduce basis functions for the finite element discretization of a second order linear elliptic operator with rough or highly oscillating coefficients. The proposed basis functions are inspired by the classic idea of component mode synthesis and exploit an orthogonal decomposition of the trial subspace to minimize the energy. Numerical experiments illustrate the effectiveness of the proposed basis functions.
Mots-clés : eigenvalues, modal analysis, multilevel, substructuring, domain decomposition, dimensional reduction, finite elements
@article{M2AN_2010__44_3_401_0, author = {Hetmaniuk, Ulrich L. and Lehoucq, Richard B.}, title = {A special finite element method based on component mode synthesis}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {401--420}, publisher = {EDP-Sciences}, volume = {44}, number = {3}, year = {2010}, doi = {10.1051/m2an/2010007}, mrnumber = {2666649}, zbl = {1190.65173}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010007/} }
TY - JOUR AU - Hetmaniuk, Ulrich L. AU - Lehoucq, Richard B. TI - A special finite element method based on component mode synthesis JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 401 EP - 420 VL - 44 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010007/ DO - 10.1051/m2an/2010007 LA - en ID - M2AN_2010__44_3_401_0 ER -
%0 Journal Article %A Hetmaniuk, Ulrich L. %A Lehoucq, Richard B. %T A special finite element method based on component mode synthesis %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 401-420 %V 44 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010007/ %R 10.1051/m2an/2010007 %G en %F M2AN_2010__44_3_401_0
Hetmaniuk, Ulrich L.; Lehoucq, Richard B. A special finite element method based on component mode synthesis. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 3, pp. 401-420. doi : 10.1051/m2an/2010007. http://archive.numdam.org/articles/10.1051/m2an/2010007/
[1] Generalized finite element methods: Their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510-536. | Zbl
and ,[2] Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31 (1994) 945-981. | Zbl
, and ,[3] On principles for the selection of shape functions for the generalized finite element method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 5595-5629. | Zbl
, and ,[4] Generalized finite element methods - main ideas, results and perspective. Int. J. Comp. Meths. 1 (2004) 67-103. | Zbl
, and ,[5] An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput. 25 (2004) 2084-2106. | Zbl
and ,[6] Component mode synthesis and eigenvalues of second order operators: Discretization and algorithm. ESAIM: M2AN 26 (1992) 385-423. | Numdam | Zbl
,[7] Augmented spaces, two-level methods, and stabilizing subgrids. Int. J. Numer. Meth. Fluids 40 (2002) 31-46. | Zbl
and ,[8] Coupling of substructures for dynamic analysis. AIAA J. 6 (1968) 1313-1319. | Zbl
and ,[9] Multiscale Finite Element Methods: Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences 4. Springer, New York, USA (2009). | Zbl
and ,[10] Multilevel methods for eigenspace computations in structural dynamics, in Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 55, Springer-Verlag (2007) 103-114.
and ,[11] A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. | Zbl
and ,[12] Vibrations of structural systems by component-mode synthesis. J. Eng. Mech. Division ASCE 86 (1960) 51-69.
,[13] A framework for adaptive multiscale methods for elliptic problems. Multiscale Model. Simul. 7 (2008) 171-196. | Zbl
, and ,[14] Domain Decomposition Methods for Partial Differential Equations - Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, UK (1999). | Zbl
and ,Cité par Sources :