A special finite element method based on component mode synthesis
ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 3, pp. 401-420.

The goal of our paper is to introduce basis functions for the finite element discretization of a second order linear elliptic operator with rough or highly oscillating coefficients. The proposed basis functions are inspired by the classic idea of component mode synthesis and exploit an orthogonal decomposition of the trial subspace to minimize the energy. Numerical experiments illustrate the effectiveness of the proposed basis functions.

DOI : 10.1051/m2an/2010007
Classification : 35J20, 65F15, 65N25, 65N30, 65N55
Mots-clés : eigenvalues, modal analysis, multilevel, substructuring, domain decomposition, dimensional reduction, finite elements
@article{M2AN_2010__44_3_401_0,
     author = {Hetmaniuk, Ulrich L. and Lehoucq, Richard B.},
     title = {A special finite element method based on component mode synthesis},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {401--420},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {3},
     year = {2010},
     doi = {10.1051/m2an/2010007},
     mrnumber = {2666649},
     zbl = {1190.65173},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2010007/}
}
TY  - JOUR
AU  - Hetmaniuk, Ulrich L.
AU  - Lehoucq, Richard B.
TI  - A special finite element method based on component mode synthesis
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 401
EP  - 420
VL  - 44
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2010007/
DO  - 10.1051/m2an/2010007
LA  - en
ID  - M2AN_2010__44_3_401_0
ER  - 
%0 Journal Article
%A Hetmaniuk, Ulrich L.
%A Lehoucq, Richard B.
%T A special finite element method based on component mode synthesis
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 401-420
%V 44
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2010007/
%R 10.1051/m2an/2010007
%G en
%F M2AN_2010__44_3_401_0
Hetmaniuk, Ulrich L.; Lehoucq, Richard B. A special finite element method based on component mode synthesis. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 3, pp. 401-420. doi : 10.1051/m2an/2010007. http://archive.numdam.org/articles/10.1051/m2an/2010007/

[1] I. Babuška and J.E. Osborn, Generalized finite element methods: Their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510-536. | Zbl

[2] I. Babuška, G. Caloz and J. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31 (1994) 945-981. | Zbl

[3] I. Babuška, U. Banerjee and J. Osborn, On principles for the selection of shape functions for the generalized finite element method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 5595-5629. | Zbl

[4] I. Babuška, U. Banerjee and J.E. Osborn, Generalized finite element methods - main ideas, results and perspective. Int. J. Comp. Meths. 1 (2004) 67-103. | Zbl

[5] J.K. Bennighof and R.B. Lehoucq, An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput. 25 (2004) 2084-2106. | Zbl

[6] F. Bourquin, Component mode synthesis and eigenvalues of second order operators: Discretization and algorithm. ESAIM: M2AN 26 (1992) 385-423. | Numdam | Zbl

[7] F. Brezzi and L. Marini, Augmented spaces, two-level methods, and stabilizing subgrids. Int. J. Numer. Meth. Fluids 40 (2002) 31-46. | Zbl

[8] R.R. Craig, Jr. and M.C.C. Bampton, Coupling of substructures for dynamic analysis. AIAA J. 6 (1968) 1313-1319. | Zbl

[9] Y. Efendiev and T. Hou, Multiscale Finite Element Methods: Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences 4. Springer, New York, USA (2009). | Zbl

[10] U. Hetmaniuk and R.B. Lehoucq, Multilevel methods for eigenspace computations in structural dynamics, in Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 55, Springer-Verlag (2007) 103-114.

[11] T. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169-189. | Zbl

[12] W.C. Hurty, Vibrations of structural systems by component-mode synthesis. J. Eng. Mech. Division ASCE 86 (1960) 51-69.

[13] J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods for elliptic problems. Multiscale Model. Simul. 7 (2008) 171-196. | Zbl

[14] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations - Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, UK (1999). | Zbl

Cité par Sources :