We propose and analyse two convergent fully discrete schemes to solve the incompressible Navier-Stokes-Nernst-Planck-Poisson system. The first scheme converges to weak solutions satisfying an energy and an entropy dissipation law. The second scheme uses Chorin's projection method to obtain an efficient approximation that converges to strong solutions at optimal rates.
Mots-clés : electrohydrodynamics, space-time discretization, finite elements, convergence
@article{M2AN_2010__44_3_531_0, author = {Prohl, Andreas and Schmuck, Markus}, title = {Convergent finite element discretizations of the {Navier-Stokes-Nernst-Planck-Poisson} system}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {531--571}, publisher = {EDP-Sciences}, volume = {44}, number = {3}, year = {2010}, doi = {10.1051/m2an/2010013}, mrnumber = {2666654}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an/2010013/} }
TY - JOUR AU - Prohl, Andreas AU - Schmuck, Markus TI - Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2010 SP - 531 EP - 571 VL - 44 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2010013/ DO - 10.1051/m2an/2010013 LA - en ID - M2AN_2010__44_3_531_0 ER -
%0 Journal Article %A Prohl, Andreas %A Schmuck, Markus %T Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system %J ESAIM: Modélisation mathématique et analyse numérique %D 2010 %P 531-571 %V 44 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an/2010013/ %R 10.1051/m2an/2010013 %G en %F M2AN_2010__44_3_531_0
Prohl, Andreas; Schmuck, Markus. Convergent finite element discretizations of the Navier-Stokes-Nernst-Planck-Poisson system. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 3, pp. 531-571. doi : 10.1051/m2an/2010013. https://www.numdam.org/articles/10.1051/m2an/2010013/
[1] Sobolev Spaces. Elsevier (2003). | Zbl
and ,[2] A stable finite element for the Stokes equations. Calcolo 23 (1984) 337-344. | Zbl
, and ,[3] Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E 70 (2004) 021506.
, and ,[4] The Mathematical Theory of Finite Element Methods. Second edition, Springer (2002). | Zbl
and ,[5] On the convergence of discrete approximations of the Navier-Stokes Equations. Math. Com. 23 (1969) 341-353. | Zbl
,[6] Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Eng. 2 (1973) 17-31. | Zbl
and ,[7] Analyse numérique d'un problème de Stefan à deux phases par une méthode d'éléments finis. SIAM J. Numer. Anal. 12 (1975) 464-487. | Zbl
,[8] Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Program, Boston, USA (1985). | Zbl
,[9] An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Engrg. 195 (2006) 6011-6045. | Zbl
, and ,[10] Finite element approximation of the non-stationary Navier-Stokes problem I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275-311. | Zbl
and ,[11] Foundations of Colloidal Science. Oxford University Press, UK (2000).
,[12] Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E 75 (2007) 021503.
, and ,[13] On some questions in boundary value problems of mathematical physics, in Contemporary Developments in Continuum Mechanics and Partial Differential equations, Math. Stud. 30, Amsterdam, North-Holland (1978) 283-346. | Zbl
,[14] Nonhomogeneous boundary value problems and applications, Grundlehren der Mathematischen Wissenschaften 181. Springer-Verlag, Berlin-New York (1972). | Zbl
and ,[15] Mathematical Topics in Fluid Mechanics, Volume 1: Incompressible Models. Oxford University Press, UK (1996). | Zbl
,[16] Convergence past singularities for a fully discrete approximation of curvature-driven interfaces. SIAM J. Numer. Anal. 34 (1997) 490-512. | Zbl
and ,[17] Physiochemical Hydrodynamics, An introduction. John Wiley and Sons, Inc. (1994).
,[18] Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations. Teubner (1997). | Zbl
,[19] On pressure approximation via projection methods for the nonstationary incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 47 (2008) 158-180.
,[20] Convergent discretizations for the Nernst-Planck-Poisson system. Numer. Math. 111 (2009) 591-630. | Zbl
and ,[21] Modeling, Analysis and Numerics in Electrohydrodynamics. Ph.D. Thesis, University of Tübingen, Germany (2008).
,[22] Analysis of the Navier-Stokes-Nernst-Planck-Poisson system. M3AS 19 (2009) 1-23.
,[23] Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl. 157 (1990) 117-148. | Zbl
,[24] Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires ii. Arch. Ration. Mech. Anal. 33 (1969) 377-385. | Zbl
,[25] Navier-Stokes equations - theory and numerical analysis. AMS Chelsea Publishing, Providence, USA (2001). | Zbl
,- Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson–Nernst–Planck equations, Communications in Nonlinear Science and Numerical Simulation, Volume 140 (2025), p. 108351 | DOI:10.1016/j.cnsns.2024.108351
- Error estimates for the finite element method of the Navier-Stokes-Poisson-Nernst-Planck equations, Applied Numerical Mathematics, Volume 197 (2024), p. 186 | DOI:10.1016/j.apnum.2023.11.012
- Banach spaces-based mixed finite element methods for the coupled Navier–Stokes and Poisson–Nernst–Planck equations, Calcolo, Volume 61 (2024) no. 2 | DOI:10.1007/s10092-024-00584-2
- A linear, second-order accurate, positivity-preserving and unconditionally energy stable scheme for the Navier–Stokes–Poisson–Nernst–Planck system, Communications in Nonlinear Science and Numerical Simulation, Volume 131 (2024), p. 107873 | DOI:10.1016/j.cnsns.2024.107873
- Efficiently high-order time-stepping R-GSAV schemes for the Navier–Stokes–Poisson–Nernst–Planck equations, Physica D: Nonlinear Phenomena, Volume 466 (2024), p. 134233 | DOI:10.1016/j.physd.2024.134233
- Analysis and Numerical Approximation of Energy-Variational Solutions to the Ericksen–Leslie Equations, Acta Applicandae Mathematicae, Volume 184 (2023) no. 1 | DOI:10.1007/s10440-023-00563-9
- Linear, second-order, unconditionally energy stable scheme for an electrohydrodynamic model with variable density and conductivity, Communications in Nonlinear Science and Numerical Simulation, Volume 125 (2023), p. 107329 | DOI:10.1016/j.cnsns.2023.107329
- Efficient time-stepping schemes for the Navier-Stokes-Nernst-Planck-Poisson equations, Computer Physics Communications, Volume 289 (2023), p. 108763 | DOI:10.1016/j.cpc.2023.108763
- New mixed finite element methods for the coupled Stokes and Poisson–Nernst–Planck equations in Banach spaces, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 57 (2023) no. 3, p. 1511 | DOI:10.1051/m2an/2023024
- Optimal Error Estimates of Coupled and Divergence-Free Virtual Element Methods for the Poisson–Nernst–Planck/Navier–Stokes Equations and Applications in Electrochemical Systems, Journal of Scientific Computing, Volume 94 (2023) no. 3 | DOI:10.1007/s10915-023-02126-4
- Stable and decoupled schemes for an electrohydrodynamics model, Mathematics and Computers in Simulation, Volume 206 (2023), p. 689 | DOI:10.1016/j.matcom.2022.12.007
- Electroosmosis in nanopores: computational methods and technological applications, Advances in Physics: X, Volume 7 (2022) no. 1 | DOI:10.1080/23746149.2022.2036638
- Numerical analysis of locally conservative weak Galerkin dual-mixed finite element method for the time-dependent Poisson–Nernst–Planck system, Computers Mathematics with Applications, Volume 92 (2021), p. 88 | DOI:10.1016/j.camwa.2021.03.008
- Numerical analysis for nematic electrolytes, IMA Journal of Numerical Analysis, Volume 41 (2021) no. 3, p. 2186 | DOI:10.1093/imanum/draa082
- Mixed Finite Element Method for Modified Poisson–Nernst–Planck/Navier–Stokes Equations, Journal of Scientific Computing, Volume 87 (2021) no. 3 | DOI:10.1007/s10915-021-01478-z
- Transient electrohydrodynamic flow with concentration-dependent fluid properties: Modelling and energy-stable numerical schemes, Journal of Computational Physics, Volume 412 (2020), p. 109430 | DOI:10.1016/j.jcp.2020.109430
- A coupled finite-volume solver for numerical simulation of electrically-driven flows, Computers Fluids, Volume 193 (2019), p. 104279 | DOI:10.1016/j.compfluid.2019.104279
- Mixed finite element analysis for the Poisson–Nernst–Planck/Stokes coupling, Journal of Computational and Applied Mathematics, Volume 341 (2018), p. 61 | DOI:10.1016/j.cam.2018.04.003
- A Linearized Local Conservative Mixed Finite Element Method for Poisson–Nernst–Planck Equations, Journal of Scientific Computing, Volume 77 (2018) no. 2, p. 793 | DOI:10.1007/s10915-018-0727-5
- Newton Solvers for Drift-Diffusion and Electrokinetic Equations, SIAM Journal on Scientific Computing, Volume 40 (2018) no. 3, p. B982 | DOI:10.1137/17m1146956
- Efficient Time-Stepping/Spectral Methods for the Navier-Stokes-Nernst-Planck-Poisson Equations, Communications in Computational Physics, Volume 21 (2017) no. 5, p. 1408 | DOI:10.4208/cicp.191015.260816a
- Adaptive and iterative methods for simulations of nanopores with the PNP–Stokes equations, Journal of Computational Physics, Volume 338 (2017), p. 452 | DOI:10.1016/j.jcp.2017.02.072
- Linearized Conservative Finite Element Methods for the Nernst–Planck–Poisson Equations, Journal of Scientific Computing, Volume 72 (2017) no. 3, p. 1269 | DOI:10.1007/s10915-017-0400-4
- Error analysis of mixed finite element method for Poisson‐Nernst‐Planck system, Numerical Methods for Partial Differential Equations, Volume 33 (2017) no. 6, p. 1924 | DOI:10.1002/num.22170
- A survey on properties of Nernst–Planck–Poisson system. Application to ionic transport in porous media, Applied Mathematical Modelling, Volume 40 (2016) no. 2, p. 846 | DOI:10.1016/j.apm.2015.06.013
- Energetically stable discretizations for charge transport and electrokinetic models, Journal of Computational Physics, Volume 306 (2016), p. 1 | DOI:10.1016/j.jcp.2015.10.053
- Error analysis of finite element method for Poisson–Nernst–Planck equations, Journal of Computational and Applied Mathematics, Volume 301 (2016), p. 28 | DOI:10.1016/j.cam.2016.01.028
- Comparison and numerical treatment of generalised Nernst–Planck models, Computer Physics Communications, Volume 196 (2015), p. 166 | DOI:10.1016/j.cpc.2015.06.004
- Homogenization of the Poisson–Nernst–Planck equations for Ion Transport in Charged Porous Media, SIAM Journal on Applied Mathematics, Volume 75 (2015) no. 3, p. 1369 | DOI:10.1137/140968082
- Sur le système de Nernst-Planck-Poisson-Boltzmann résultant de l’homogénéisation par convergence à double échelle, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 23 (2014) no. 1, p. 1 | DOI:10.5802/afst.1396
- Homogenization of the Nernst-Planck-Poisson System by Two-Scale Convergence, Journal of Elasticity, Volume 114 (2014) no. 1, p. 69 | DOI:10.1007/s10659-013-9427-4
- A DIFFUSE INTERFACE MODEL FOR ELECTROWETTING WITH MOVING CONTACT LINES, Mathematical Models and Methods in Applied Sciences, Volume 24 (2014) no. 01, p. 67 | DOI:10.1142/s0218202513500474
- Regularity criteria for a mathematical model for the deformation of electrolyte droplets, Applied Mathematics Letters, Volume 26 (2013) no. 4, p. 494 | DOI:10.1016/j.aml.2012.12.003
- A stabilized finite element method for the numerical simulation of multi-ion transport in electrochemical systems, Computer Methods in Applied Mechanics and Engineering, Volume 223-224 (2012), p. 199 | DOI:10.1016/j.cma.2012.02.003
- Mathematical study of non-ideal electrostatic correlations in equilibrium electrolytes, Nonlinearity, Volume 25 (2012) no. 6, p. 1635 | DOI:10.1088/0951-7715/25/6/1635
- Direct numerical simulation of electroconvective instability and hysteretic current-voltage response of a permselective membrane, Physical Review E, Volume 86 (2012) no. 4 | DOI:10.1103/physreve.86.046310
- Numerical investigation of homogenized Stokes–Nernst–Planck–Poisson systems, Computing and Visualization in Science, Volume 14 (2011) no. 8, p. 385 | DOI:10.1007/s00791-013-0189-0
Cité par 37 documents. Sources : Crossref