Electrowetting of a 3D drop : numerical modelling with electrostatic vector fields
ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 4, pp. 647-670.

The electrowetting process is commonly used to handle very small amounts of liquid on a solid surface. This process can be modelled mathematically with the help of the shape optimization theory. However, solving numerically the resulting shape optimization problem is a very complex issue, even for reduced models that occur in simplified geometries. Recently, the second author obtained convincing results in the 2D axisymmetric case. In this paper, we propose and analyze a method that is suitable for the full 3D case.

DOI : 10.1051/m2an/2010014
Classification : 65N12, 65N30, 49Q10
Mots clés : electrowetting, energy minimization, contact angle, error estimates
@article{M2AN_2010__44_4_647_0,
     author = {Ciarlet Jr., Patrick and Scheid, Claire},
     title = {Electrowetting of a {3D} drop : numerical modelling with electrostatic vector fields},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {647--670},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {4},
     year = {2010},
     doi = {10.1051/m2an/2010014},
     mrnumber = {2683577},
     zbl = {1193.78029},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2010014/}
}
TY  - JOUR
AU  - Ciarlet Jr., Patrick
AU  - Scheid, Claire
TI  - Electrowetting of a 3D drop : numerical modelling with electrostatic vector fields
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 647
EP  - 670
VL  - 44
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2010014/
DO  - 10.1051/m2an/2010014
LA  - en
ID  - M2AN_2010__44_4_647_0
ER  - 
%0 Journal Article
%A Ciarlet Jr., Patrick
%A Scheid, Claire
%T Electrowetting of a 3D drop : numerical modelling with electrostatic vector fields
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 647-670
%V 44
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2010014/
%R 10.1051/m2an/2010014
%G en
%F M2AN_2010__44_4_647_0
Ciarlet Jr., Patrick; Scheid, Claire. Electrowetting of a 3D drop : numerical modelling with electrostatic vector fields. ESAIM: Modélisation mathématique et analyse numérique, Tome 44 (2010) no. 4, pp. 647-670. doi : 10.1051/m2an/2010014. http://archive.numdam.org/articles/10.1051/m2an/2010014/

[1] P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data. Comput. Aided Geom. Design 1 (1984) 169-181. | Zbl

[2] B. Berge, Electrocapillarité et mouillage de films isolants par l'eau. C. R. Acad. Sci. Paris Ser. II 317 (1993) 157.

[3] S. Bouchereau, Modelling and numerical simulation of electrowetting. Ph.D. Thesis, Université Grenoble I, France (1997) [in French].

[4] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Series in Computational Mathematics 15. Springer-Verlag (1991). | Zbl

[5] D. Bucur and G. Butazzo, Variational methods in shape optimization problems. Birkhaüser, Boston, USA (2005). | Zbl

[6] J. Buehrle, S. Herminghaus and F. Mugele, Interface profile near three phase contact lines in electric fields. Phys. Rev. Lett. 91 (2003) 086101.

[7] Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 1542-1570. | Zbl

[8] P. Ciarlet, Jr., Augmented formulations for solving Maxwell equations. Comp. Meth. Appl. Mech. Eng. 194 (2005) 559-586. | Zbl

[9] P. Ciarlet, Jr. and J. He, The Singular Complement Method for 2d problems. C. R. Acad. Sci. Paris Ser. I 336 (2003) 353-358. | Zbl

[10] P. Ciarlet, Jr. and G. Hechme, Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comp. Meth. Appl. Mech. Eng. 198 (2008) 358-365. | Zbl

[11] P. Ciarlet, Jr., F. Lefèvre, S. Lohrengel and S. Nicaise, Weighted regularization for composite materials in electromagnetism. ESAIM: M2AN 44 (2010) 75-108. | Numdam | Zbl

[12] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis II, P.G. Ciarlet and J.-L. Lions Eds., Elsevier, North Holland (1991) 17-351. | Zbl

[13] M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93 (2002) 239-277. | Zbl

[14] M. Costabel, M. Dauge, D. Martin and G. Vial, Weighted Regularization of Maxwell Equations - Computations in Curvilinear Polygons, in Proceedings of Enumath'01, held in Ischia, Italy (2002). | Zbl

[15] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Mod. Meth. Appl. Sci. 7 (1997) 957-991. | Zbl

[16] V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin, Germany (1986). | Zbl

[17] A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique, Mathematics and Applications 48. Springer-Verlag (2005) [in French]. | Zbl

[18] S. Kaddouri, Solution to the electrostatic potential problem in singular (prismatic or axisymmetric) domains. A multi-scale study in quasi-singular domains. Ph.D. Thesis, École Polytechnique, France (2007) [in French].

[19] P. Monk, Finite Elements Methods for Maxwell's equations. Oxford Science Publications, UK (2003).

[20] F. Mugele and J.C. Baret, Electrowetting: From basics to applications. J. Phys., Condens. Matter 17 (2005) R705-R774.

[21] F. Murat and J. Simon, Sur le contrôle optimal par un domaine géométrique. Publication du Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (Paris VI), France (1976).

[22] J.-C. Nédélec, Mixed finite elements in 3 . Numer. Math. 35 (1980) 315-341. | Zbl

[23] S. Nicaise, Polygonal interface problems. Peter Lang, Berlin, Germany (1993). | Zbl

[24] S. Nicaise and A.-M. Sändig, General interface problems I, II. Math. Meth. Appl. Sci. 17 (1994) 395-450. | Zbl

[25] A. Papathanasiou and A. Boudouvis, A manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Appl. Phys. Lett. 86 (2005) 164102.

[26] C. Quilliet and B. Berge, Electrowetting: a recent outbreak. Curr. Opin. Colloid In. 6 (2001) 34-39.

[27] F. Rapetti, Higher order variational discretizations on simplices: applications to numerical electromagnetics. Habilitation à Diriger les Recherches, Université de Nice, France (2008) [in French].

[28] C. Scheid, Theoretical and numerical analysis in the vicinity of the triple point in Electrowetting. Ph.D. Thesis, Université Grenoble I, France (2007) [in French].

[29] C. Scheid and P. Witomski, A proof of the invariance of the contact angle in electrowetting. Math. Comp. Model. 49 (2009) 647-665. | Zbl

[30] T. Sorokina and A.J. Worsey, A multivariate Powell-Sabin interpolant. Adv. Comput. Math. 29 (2008) 71-89. | Zbl

[31] M. Vallet, M. Vallade and B. Berge, Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur. Phys. J. B. 11 (1999) 583.

[32] H. Verheijen and M. Prins, Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15 (1999) 6616.

[33] A.J. Worsey and B. Piper, A trivariate Powell-Sabin interpolant. Comp. Aided Geom. Design 5 (1988) 177-186. | Zbl

Cité par Sources :