Hexahedral 𝐇(div) and 𝐇(curl) finite elements
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 1, pp. 115-143.

We study the approximation properties of some finite element subspaces of H(div;Ω) and H(curl;Ω) defined on hexahedral meshes in three dimensions. This work extends results previously obtained for quadrilateral H(div;Ω) finite elements and for quadrilateral scalar finite element spaces. The finite element spaces we consider are constructed starting from a given finite dimensional space of vector fields on the reference cube, which is then transformed to a space of vector fields on a hexahedron using the appropriate transform (e.g., the Piola transform) associated to a trilinear isomorphism of the cube onto the hexahedron. After determining what vector fields are needed on the reference element to insure O(h) approximation in L2(Ω) and in H(div;Ω) and H(curl;Ω) on the physical element, we study the properties of the resulting finite element spaces.

DOI : 10.1051/m2an/2010034
Classification : 65N30
Mots-clés : hexahedral finite element
@article{M2AN_2011__45_1_115_0,
     author = {Falk, Richard S. and Gatto, Paolo and Monk, Peter},
     title = {Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {115--143},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {1},
     year = {2011},
     doi = {10.1051/m2an/2010034},
     zbl = {1270.65066},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2010034/}
}
TY  - JOUR
AU  - Falk, Richard S.
AU  - Gatto, Paolo
AU  - Monk, Peter
TI  - Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2011
SP  - 115
EP  - 143
VL  - 45
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2010034/
DO  - 10.1051/m2an/2010034
LA  - en
ID  - M2AN_2011__45_1_115_0
ER  - 
%0 Journal Article
%A Falk, Richard S.
%A Gatto, Paolo
%A Monk, Peter
%T Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2011
%P 115-143
%V 45
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2010034/
%R 10.1051/m2an/2010034
%G en
%F M2AN_2011__45_1_115_0
Falk, Richard S.; Gatto, Paolo; Monk, Peter. Hexahedral $\mathbf {H}(\operatorname{div})$ and $\mathbf {H}(\operatorname{curl})$ finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 1, pp. 115-143. doi : 10.1051/m2an/2010034. http://archive.numdam.org/articles/10.1051/m2an/2010034/

[1] D.N. Arnold, D. Boffi, R.S. Falk and L. Gastaldi, Finite element approximation on quadrilateral meshes. Comm. Num. Meth. Eng. 17 (2001) 805-812. | MR | Zbl

[2] D.N. Arnold, D. Boffi and R.S. Falk, Approximation by quadrilateral finite elements. Math. Comp. 71 (2002) 909-922. | MR | Zbl

[3] D.N. Arnold, D. Boffi and R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429-2451. | MR | Zbl

[4] I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Proc. Sympos., Univ. Maryland, Baltimore, Md. Academic Press, New York (1972) 1-359. | MR | Zbl

[5] A. Bermúdez, P. Gamallo, M.R. Nogeiras and R. Rodríguez, Approximation properties of lowest-order hexahedral Raviart-Thomas elements. C. R. Acad. Sci. Paris, Sér. I 340 (2005) 687-692. | MR | Zbl

[6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (1994). | MR | Zbl

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, New York (1991). | MR | Zbl

[8] F. Dubois, Discrete vector potential representation of a divergence free vector field in three dimensional domains: Numerical analysis of a model problem. SINUM 27 (1990) 1103-1142. | MR | Zbl

[9] T. Dupont and R. Scott, Polynomial Approximation of Functions in Sobolev Spaces. Math. Comp. 34 (1980) 441-463. | MR | Zbl

[10] P. Gatto, Elementi finiti su mesh di esaedri distorti per l'approssimazione di H(div) [Approximation of H(div) via finite elements over meshes of distorted hexahedra]. Master's Thesis, Dipartimento di Matematica, Università Pavia, Italy (2006).

[11] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986). | MR | Zbl

[12] R.L. Naff, T.F. Russell and J.D. Wilson, Shape Functions for Velocity Interpolation in General Hexahedral Cells. Comput. Geosci. 6 (2002) 285-314. | MR | Zbl

[13] T.F. Russell, C.I. Heberton, L.F. Konikow and G.Z. Hornberger, A finite-volume ELLAM for three-dimensional solute-transport modeling. Ground Water 41 (2003) 258-272.

[14] P. Šolín, K. Segeth and I. Doležel, Higher Order Finite Elements Methods, Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2004). | Zbl

[15] S. Zhang, On the nested refinement of quadrilateral and hexahedral finite elements and the affine approximation. Numer. Math. 98 (2004) 559-579. | MR | Zbl

[16] S. Zhang, Invertible Jacobian for hexahedral finite elements. Part 1. Bijectivity. Preprint available at http://www.math.udel.edu/ szhang/research/p/bijective1.ps (2005).

[17] S. Zhang, Invertible Jacobian for hexahedral finite elements. Part 2. Global positivity. Preprint available at http://www.math.udel.edu/ szhang/research/p/bijective2.ps (2005).

[18] S. Zhang, Subtetrahedral test for the positive Jacobian of hexahedral elements. Preprint available at http://www.math.udel.edu/ szhang/research/p/subtettest.pdf (2005).

Cité par Sources :