The standard multilayer Saint-Venant system consists in introducing fluid layers that are advected by the interfacial velocities. As a consequence there is no mass exchanges between these layers and each layer is described by its height and its average velocity. Here we introduce another multilayer system with mass exchanges between the neighboring layers where the unknowns are a total height of water and an average velocity per layer. We derive it from Navier-Stokes system with an hydrostatic pressure and prove energy and hyperbolicity properties of the model. We also give a kinetic interpretation leading to effective numerical schemes with positivity and energy properties. Numerical tests show the versatility of the approach and its ability to compute recirculation cases with wind forcing.
Mots clés : Navier-Stokes equations, Saint-Venant equations, free surface, multilayer system, kinetic scheme
@article{M2AN_2011__45_1_169_0, author = {Audusse, Emmanuel and Bristeau, Marie-Odile and Perthame, Beno{\^\i}t and Sainte-Marie, Jacques}, title = {A multilayer {Saint-Venant} system with mass exchanges for shallow water flows. {Derivation} and numerical validation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {169--200}, publisher = {EDP-Sciences}, volume = {45}, number = {1}, year = {2011}, doi = {10.1051/m2an/2010036}, mrnumber = {2781135}, zbl = {1290.35194}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010036/} }
TY - JOUR AU - Audusse, Emmanuel AU - Bristeau, Marie-Odile AU - Perthame, Benoît AU - Sainte-Marie, Jacques TI - A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 169 EP - 200 VL - 45 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010036/ DO - 10.1051/m2an/2010036 LA - en ID - M2AN_2011__45_1_169_0 ER -
%0 Journal Article %A Audusse, Emmanuel %A Bristeau, Marie-Odile %A Perthame, Benoît %A Sainte-Marie, Jacques %T A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 169-200 %V 45 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010036/ %R 10.1051/m2an/2010036 %G en %F M2AN_2011__45_1_169_0
Audusse, Emmanuel; Bristeau, Marie-Odile; Perthame, Benoît; Sainte-Marie, Jacques. A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 1, pp. 169-200. doi : 10.1051/m2an/2010036. http://archive.numdam.org/articles/10.1051/m2an/2010036/
[1] A multilayer Saint-Venant system: Derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 189-214. | MR | Zbl
,[2] Transport of pollutant in shallow water flows: A two time steps kinetic method. ESAIM: M2AN 37 (2003) 389-416. | Numdam | MR | Zbl
and ,[3] A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes. J. Comput. Phys. 206 (2005) 311-333. | MR | Zbl
and ,[4] Finite-volume solvers for a multilayer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17 (2007) 311-319. | MR | Zbl
and ,[5] A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows. SIAM J. Sci. Comput. 25 (2004) 2050-2065. | MR | Zbl
, , , and ,[6] Numerical simulations of 3d free surface flows by a multilayer Saint-Venant model. Int. J. Numer. Methods Fluids 56 (2008) 331-350. | MR | Zbl
, and ,[7] Théorie du mouvement non permanent des eaux avec applications aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147-154. | JFM
,[8] An introduction to finite volume methods for hyperbolic conservation laws. ESAIM: Proc. 15 (2004) 107-127. | MR | Zbl
,[9] An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. ESAIM: M2AN 42 (2008) 683-698. | Numdam | MR | Zbl
and ,[10] Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2 (2004) 359-389. | MR | Zbl
and ,[11] Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 733-759. | MR | Zbl
and ,[12] Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202-235. | Zbl
, , , , and ,[13] A q-scheme for a class of systems of coupled conservation laws with source term. application to a two-layer 1-D shallow water system. ESAIM: M2AN 35 (2001) 107-127. | Numdam | MR | Zbl
, and ,[14] Sigma transformation and ALE formulation for three-dimensional free surface flows. Int. J. Numer. Methods Fluids 59 (2009) 357-386. | MR | Zbl
and ,[15] Asymptotic derivation of the section-averaged shallow water equations for river hydraulics. M3AS 19 (2009) 387-417. | MR | Zbl
, , and ,[16] A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography. ESAIM: M2AN 38 (2004) 211-234. | Numdam | MR | Zbl
and ,[17] FreeFem++ home page, http://www.freefem.org/ff++/index.htm (2009).
[18] Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89-102. | MR | Zbl
and ,[19] Mathematical Topics in Fluid Mechanics, Incompressible models, Vol. 1. Oxford University Press, UK (1996). | MR | Zbl
,[20] Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. B, Fluids 26 (2007) 49-63. | MR | Zbl
,[21] Rough boundaries and wall laws. Int. J. Numer. Methods Fluids 27 (1998) 169-177. | MR | Zbl
, and ,[22] Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterw. Port Coast. Ocean Eng. ASCE 119 (1993) 618-638.
,[23] Long waves on a beach. J. Fluid Mech. 27 (1967) 815-827. | Zbl
,[24] Kinetic formulation of conservation laws. Oxford University Press, UK (2002). | MR | Zbl
,[25] A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201-231. | MR | Zbl
and ,[26] Simulation model of a mesotrophic reservoir (Lac de Pareloup, France): Melodia, an ecosystem reservoir management model. Ecol. model. 84 (1996) 163-187.
and ,[27] Multilevel finite-difference model for three-dimensional hydrodynamic circulation. Ocean Eng. 24 (1997) 785-816.
, and ,[28] The long wave paradox in the theory of gravity waves. Proc. Cambridge Phil. Soc. 49 (1953) 685-694. | MR | Zbl
,[29] A numerical Method for Extended Boussinesq Shallow-Water Wave Equations. Ph.D. Thesis, University of Leeds, UK (1999).
,Cité par Sources :