An introduction to probabilistic methods with applications
ESAIM: Modélisation mathématique et analyse numérique, Special Issue on Probabilistic methods and their applications, Tome 44 (2010) no. 5, pp. 805-829.

This special volume of the ESAIM Journal, Mathematical Modelling and Numerical Analysis, contains a collection of articles on probabilistic interpretations of some classes of nonlinear integro-differential equations. The selected contributions deal with a wide range of topics in applied probability theory and stochastic analysis, with applications in a variety of scientific disciplines, including physics, biology, fluid mechanics, molecular chemistry, financial mathematics and bayesian statistics. In this preface, we provide a brief presentation of the main contributions presented in this special volume. We have also included an introduction to classic probabilistic methods and a presentation of the more recent particle methods, with a synthetic picture of their mathematical foundations and their range of applications.

DOI : 10.1051/m2an/2010043
Classification : 65M75, 68Q87, 60H35, 35Q68, 37N10, 35Q35, 35Q20
Mots-clés : Fokker-Planck equations, Vlasov diffusion models, fluid-lagrangian-velocities model, Boltzmann collision models, interacting jump processes, adaptive biasing force model, molecular dynamics, ground state energies, hidden Markov chain problems, Feynman-Kac semigroups, Dirichlet problems with boundary conditions, Poisson Boltzmann equations, mean field stochastic particle models, stochastic analysis, functional contraction inequalities, uniform propagation of chaos properties w.r.t. the time parameter
@article{M2AN_2010__44_5_805_0,
     author = {Del Moral, Pierre and Hadjiconstantinou, Nicolas G.},
     title = {An introduction to probabilistic methods with applications},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {805--829},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {5},
     year = {2010},
     doi = {10.1051/m2an/2010043},
     mrnumber = {2731394},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2010043/}
}
TY  - JOUR
AU  - Del Moral, Pierre
AU  - Hadjiconstantinou, Nicolas G.
TI  - An introduction to probabilistic methods with applications
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 805
EP  - 829
VL  - 44
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2010043/
DO  - 10.1051/m2an/2010043
LA  - en
ID  - M2AN_2010__44_5_805_0
ER  - 
%0 Journal Article
%A Del Moral, Pierre
%A Hadjiconstantinou, Nicolas G.
%T An introduction to probabilistic methods with applications
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 805-829
%V 44
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2010043/
%R 10.1051/m2an/2010043
%G en
%F M2AN_2010__44_5_805_0
Del Moral, Pierre; Hadjiconstantinou, Nicolas G. An introduction to probabilistic methods with applications. ESAIM: Modélisation mathématique et analyse numérique, Special Issue on Probabilistic methods and their applications, Tome 44 (2010) no. 5, pp. 805-829. doi : 10.1051/m2an/2010043. http://archive.numdam.org/articles/10.1051/m2an/2010043/

[1] H.A. Al-Mohssen and N.G. Hadjiconstantinou, Low-variance direct Monte Carlo simulations using importance weights. ESAIM: M2AN 44 (2010) 1069-1083. | Numdam | Zbl

[2] C. Baehr, Nonlinear filtering for observations on a random vector field along a random vector field along a random path. Application to atmospheric turbulent velocities. ESAIM: M2AN 44 (2010) 921-945. | Numdam

[3] J.B. Bell, A.L. Garcia and S.H. Williams, Computational fluctuating fluid dynamics. ESAIM: M2AN 44 (2010) 1085-1105. | Numdam

[4] F. Bernardin, M. Bossy, C. Chauvin, F. Jabir and A. Rousseau, Stochastic Lagrangian method for downscaling problems in meteorology. ESAIM: M2AN 44 (2010) 885-920. | Numdam

[5] F. Bolley, A. Guillin and C. Villani, Quantitative concentration inequalities for empirical measures on non compact spaces. Prob. Theor. Relat. Fields 137 (2007) 541-593. | Zbl

[6] F. Bolley, A. Guillin and F. Malrieu, Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. ESAIM: M2AN 44 (2010) 867-884. | Numdam | Zbl

[7] N. Champagnat, M. Bossy and D. Talay, Probabilistic interpretation and random walk on spheres algorithms for the Poisson-Boltzmann equation in molecular dynamics. ESAIM: M2AN 44 (2010) 997-1048. | Numdam | Zbl

[8] D. Crisan and K. Manolarakis, Probabilistic methods for semilinear PDEs. Application to finance. ESAIM: M2AN 44 (2010) 1107-1133. | Numdam

[9] P. Del Moral, Feynman-Kac formulae. Genealogical and interacting particle approximations, Series: Probability and Applications. Springer, New York (2004). | Zbl

[10] P. Del Moral and A. Guionnet, On the stability of Measure Valued Processes with Applications to filtering. C. R. Acad. Sci. Paris, Sér. I 329 (1999) 429-434. | Zbl

[11] P. Del Moral and A. Guionnet, On the stability of interacting processes with applications to filtering and genetic algorithms. Ann. Inst. Henri Poincaré 37 (2001) 155-194. | Numdam | Zbl

[12] P. Del Moral and L. Miclo, Branching and Interacting Particle Systems Approximations of Feynman-Kac Formulae with Applications to Non-Linear Filtering, in Séminaire de Probabilités XXXIV, J. Azéma, M. Emery, M. Ledoux and M. Yor Eds., Lecture Notes in Mathematics 1729, Springer-Verlag, Berlin (2000) 1-145. | Numdam | Zbl

[13] P. Del Moral and L. Miclo, Asymptotic stability of non linear semigroup of Feynman-Kac type. Ann. Fac. Sci. Toulouse Math. 11 (2002) 135-175. | Zbl

[14] P. Del Moral and L. Miclo, Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171-208. | Numdam | Zbl

[15] P. Del Moral and E. Rio, Concentration inequalities for mean field particle models. Ann. Appl. Probab. (to appear).

[16] P. Del Moral, A. Doucet and S.S. Singh, A backward particle interpretation of Feynman-Kac formulae. ESAIM: M2AN 44 (2010) 947-975. | Numdam

[17] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications. Jones and Barlett Publishers, Boston (1993). | Zbl

[18] M. El Makrini, B. Jourdain and T. Lelièvre, Diffusion Monte Carlo method: Numerical analysis in a simple case. ESAIM: M2AN 41 (2007) 189-213. | Numdam | Zbl

[19] S.N. Ethier and T.G. Kurtz, Markov processes: characterization and convergence, Wiley Series Probability & Statistics. Wiley (1986). | Zbl

[20] M. Freidlin, Functional integration and partial differential equations, Annals of Mathematics Studies 109. Princeton University Press (1985). | Zbl

[21] B. Jourdain, R. Roux and T. Lelièvre, Existence, uniqueness and convergence of a particle approximation for the adaptive biasing force. ESAIM: M2AN 44 (2010) 831-865. | Numdam | Zbl

[22] M. Kac, On distributions of certain Wiener functionals. Trans. Amer. Math. Soc. 65 (1949) 1-13. | Zbl

[23] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Graduate Texts in Mathematics. Springer (2004). | Zbl

[24] T. Lelièvre, M. Rousset and G. Stoltz, Long-time convergence of an adaptive biasing force method. Nonlinearity 21 (2008) 1155-1181. | Zbl

[25] S. Lototsky, B. Rozovsky and X. Wan, Elliptic equations of higher stochastic order. ESAIM: M2AN 44 (2010) 1135-1153. | Numdam | Zbl

[26] F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE's. Stochastic Process. Appl. 95 (2001) 109-132. | Zbl

[27] F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes. Ann. Appl. Probab. 13 (2003) 540-560. | Zbl

[28] F. Malrieu and D. Talay, Concentration inequalities for Euler schemes, in Monte Carlo and Quasi Monte Carlo Methods 2004, H. Niederreiter and D. Talay Eds., Springer (2005) 355-372. | Zbl

[29] M. Mascagni and N.A. Simonov, Monte Carlo methods for calculating some physical properties of large molecules. SIAM J. Sci. Comput. 26 (2004) 339-357. | Zbl

[30] H.P. Mckean, Propagation of chaos for a class of non-linear parabolic equation, in Stochastic Differential Equations, Lecture Series in Differential Equations, Catholic Univ., Air Force Office Sci. Res., Arlington (1967) 41-57. | Zbl

[31] S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations 1627, Lecture Notes in Mathematics, Springer, Berlin-Heidelberg (1996) 44-95. | Zbl

[32] S. Mischler and C. Mouhot, Quantitative uniform in time chaos propagation for Boltzmann collision processes. arXiv:1001.2994v1 (2010).

[33] O. Muscato, W. Wagner and V. Di Stefano, Numerical study of the systematic error in Monte Carlo schemes for semiconductors. ESAIM: M2AN 44 (2010) 1049-1068. | Numdam | Zbl

[34] P. Protter, Stochastic integration and differential equations, Stochastic Modelling and Applied Probability 21. Springer-Verlag, Berlin (2005). | Zbl

[35] D. Revuz and M. Yor, Continuous martingales and Brownian motion. Springer-Verlag, New York (1991). | Zbl

[36] M. Rousset, On the control of an interacting particle approximation of Schrödinger ground states. SIAM J. Math. Anal. 38 (2006) 824-844. | Zbl

[37] M. Rousset, On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes. ESAIM: M2AN 44 (2010) 977-995. | Numdam

[38] A.-S. Sznitman, Topics in propagation of chaos, in Lecture Notes in Math 1464, Springer, Berlin (1991) 164-251. | Zbl

[39] D. Talay, Approximation of invariant measures on nonlinear Hamiltonian and dissipative stochastic different equations, in Progress in Stochastic Structural Dynamics 152, L.M.A.-C.N.R.S. (1999) 139-169.

[40] H. Tanaka, Stochastic differential equation corresponding to the spatially homogeneous Boltzmann equation of Maxwellian and non cut-off type. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 34 (1987) 351-369. | Zbl

[41] A.W. Van Der Vaart and J.A. Wellner, Weak Convergence and Empirical Processes. Second edition, Springer (2000). | Zbl

Cité par Sources :