Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 3, pp. 477-504.

We consider a viscoelastic solid in Kelvin-Voigt rheology exhibiting also plasticity with hardening and coupled with heat-transfer through dissipative heat production by viscoplastic effects and through thermal expansion and corresponding adiabatic effects. Numerical discretization of the thermodynamically consistent model is proposed by implicit time discretization, suitable regularization, and finite elements in space. Fine a-priori estimates are derived, and convergence is proved by careful successive limit passage. Computational 3D simulations illustrate an implementation of the method as well as physical effects of residual stresses substantially depending on rate of heat treatment.

DOI : 10.1051/m2an/2010063
Classification : 35K85, 49S05, 65M60, 74C05, 80A17
Mots-clés : thermodynamics of plasticity, Kelvin-Voigt rheology, hardening, thermal expansion, adiabatic effects, finite element method, implicit time discretization, convergence
@article{M2AN_2011__45_3_477_0,
     author = {Bartels, S\"oren and Roub{\'\i}\v{c}ek, Tom\'a\v{s}},
     title = {Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {477--504},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {3},
     year = {2011},
     doi = {10.1051/m2an/2010063},
     mrnumber = {2804647},
     zbl = {1267.74037},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2010063/}
}
TY  - JOUR
AU  - Bartels, Sören
AU  - Roubíček, Tomáš
TI  - Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2011
SP  - 477
EP  - 504
VL  - 45
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2010063/
DO  - 10.1051/m2an/2010063
LA  - en
ID  - M2AN_2011__45_3_477_0
ER  - 
%0 Journal Article
%A Bartels, Sören
%A Roubíček, Tomáš
%T Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2011
%P 477-504
%V 45
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2010063/
%R 10.1051/m2an/2010063
%G en
%F M2AN_2011__45_3_477_0
Bartels, Sören; Roubíček, Tomáš. Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 3, pp. 477-504. doi : 10.1051/m2an/2010063. http://archive.numdam.org/articles/10.1051/m2an/2010063/

[1] C. Agelet De Saracibar, M. Cervera and M. Chiumenti, On the formulation of coupled thermoplastic problems with phase-change. Int. J. Plasticity 15 (1999) 1-34. | Zbl

[2] J. Alberty, C. Carstensen and S.A. Funken, Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algorithms 20 (1999) 117-137. | MR | Zbl

[3] S. Bartels and T. Roubíček, Thermoviscoplasticity at small strains. ZAMM 88 (2008) 735-754. | MR | Zbl

[4] L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data. J. Funct. Anal. 147 (1997) 237-258. | MR | Zbl

[5] L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87 (1989) 149-169. | Zbl

[6] L. Boccardo and T. Gallouët, Summability of the solutions of nonlinear elliptic equations with right hand side measures. J. Convex Anal. 3 (1996) 361-365. | MR | Zbl

[7] B.A. Boley and J.H. Weiner, Theory of thermal stresses. J. Wiley (1960), Dover edition (1997). | MR | Zbl

[8] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer, second edition, New York (2002). | MR | Zbl

[9] O. Bruhns and J. Mielniczuk, Zur Theorie der Verzweigungen nicht-isothermer elastoplastischer Deformationen. Ing.-Arch. 46 (1977) 65-74. | Zbl

[10] M. Canadija and J. Brnic, Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. Int. J. Plasticity 20 (2004) 1851-1874. | Zbl

[11] C. Carstensen and R. Klose, Elastoviscoplastic finite element analysis in 100 lines of Matlab. J. Numer. Math. 10 (2002) 157-192. | MR | Zbl

[12] G. Dal Maso, G.A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Rational Mech. Anal. 176 (2005) 165-225. | MR | Zbl

[13] G. Dal Maso, A. Desimone and M.G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237-291. | MR | Zbl

[14] C. Eck, J. Jarušek and M. Krbec, Unilateral Contact Problems. Chapman & Hall/CRC, Boca Raton (2005). | MR | Zbl

[15] G. Francfort and A. Mielke, An existence result for a rate-independent material model in the case of nonconvex energies. J. reine angew. Math. 595 (2006) 55-91. | MR | Zbl

[16] P. Hakansson, M. Wallin and M. Ristinmaa, Comparison of isotropic hardening and kinematic hardening in thermoplasticity. Int. J. Plasticity 21 (2005) 1435-1460. | Zbl

[17] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Kluwer, Dordrecht, Part I (1997), Part II (2000).

[18] D. Knees, On global spatial regularity and convergence rates for time dependent elasto-plasticity. Math. Models Methods Appl. Sci. (2010) DOI: 10.1142/S0218202510004805. | MR | Zbl

[19] G.A. Maughin, The Thermomechanics of Plasticity and Fracture. Cambridge Univ. Press, Cambridge (1992). | MR | Zbl

[20] C. Miehe, A theory of large-strain isotropic thermoplasticity based on metric transformation tensor. Archive Appl. Mech. 66 (1995) 45-64. | Zbl

[21] A. Mielke, Evolution of rate-independent systems, in Handbook of Differential Equations: Evolut. Diff. Eqs., C. Dafermos and E. Feireisl Eds., Elsevier, Amsterdam (2005) 461-559. | MR | Zbl

[22] A. Mielke and T. Roubíček, Numerical approaches to rate-independent processes and applications in inelasticity. ESAIM: M2AN 43 (2009) 399-428. | Numdam | MR | Zbl

[23] A. Mielke and and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in Models of continuum mechanics in analysis and engineering, H.-D. Alber, R. Balean and R. Farwing Eds., Shaker Ver., Aachen (1999) 117-129.

[24] A. Mielke and F. Theil, On rate-independent hysteresis models. Nonlin. Diff. Eq. Appl. 11 (2004) 151-189. | MR | Zbl

[25] A. Mielke, T. Roubíček and U. Stefanelli, Γ-limits and relaxations for rate-independent evolutionary problems. Calc. Var. PDE 31 (2008) 387-416. | MR

[26] T.D.W. Nicholson, Large deformation theory of coupled thermoplasticity including kinematic hardening. Acta Mech. 142 (2000) 207-222. | Zbl

[27] P. Rosakis, A.J. Rosakis, G. Ravichandran and J. Hodowany, A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J. Mech. Phys. Solids 48 (2000) 581-607. | Zbl

[28] T. Roubíček, Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2005). | Zbl

[29] T. Roubíček, Thermo-visco-elasticity at small strains with L1-data. Quart. Appl. Math. 67 (2009) 47-71. | MR | Zbl

[30] T. Roubíček, Rate independent processes in viscous solids at small strains. Math. Methods Appl. Sci. 32 (2009) 825-862. | MR | Zbl

[31] T. Roubíček, Thermodynamics of rate independent processes in viscous solids at small strains. SIAM J. Math. Anal. 42 (2010) 256-297. | MR | Zbl

[32] A. Srikanth and N. Zabaras, A computational model for the finite element analysis of thermoplasticity coupled with ductile damage at fonite strains. Int. J. Numer. Methods Eng. 45 (1999) 1569-1605. | Zbl

[33] Q. Yang, L. Stainier and M. Ortiz, A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids. J. Mech. Phys. Solids 54 (2006) 401-424. | MR | Zbl

[34] H. Ziegler, A modification of Prager's hardening rule. Quart. Appl. Math. 17 (1959) 55-65. | MR | Zbl

Cité par Sources :