Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian structure of these equations and associated stability properties. For a large class of material parameters compactness of the discrete solutions is established which guarantees convergence.
Mots clés : liquid crystal, Ericksen-Leslie equations, numerical approximation
@article{M2AN_2011__45_3_523_0, author = {Walkington, Noel J.}, title = {Numerical approximation of nematic liquid crystal flows governed by the {Ericksen-Leslie} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {523--540}, publisher = {EDP-Sciences}, volume = {45}, number = {3}, year = {2011}, doi = {10.1051/m2an/2010065}, mrnumber = {2804649}, zbl = {1267.76008}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010065/} }
TY - JOUR AU - Walkington, Noel J. TI - Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 523 EP - 540 VL - 45 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010065/ DO - 10.1051/m2an/2010065 LA - en ID - M2AN_2011__45_3_523_0 ER -
%0 Journal Article %A Walkington, Noel J. %T Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 523-540 %V 45 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010065/ %R 10.1051/m2an/2010065 %G en %F M2AN_2011__45_3_523_0
Walkington, Noel J. Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 3, pp. 523-540. doi : 10.1051/m2an/2010065. http://archive.numdam.org/articles/10.1051/m2an/2010065/
[1] Finite element approximations of harmonic map heat flows and wave map into spheres of nonconstant radii. Numer. Math. 115 (2010) 395-432. | MR | Zbl
, and ,[2] Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. Math. Model. Numer. Anal. 40 (2006) 175-199. | Numdam | MR | Zbl
, and ,[3] Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow. SIAM J. Numer. Anal. 46 (2008) 1704-1731. | MR | Zbl
, and ,[4] Ginzburg-Landau Vorticies. Kluwer (1995). | MR | Zbl
, and ,[5] Minimum energy configurations for liquid crystals: Computational results, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987). | MR | Zbl
, , , and ,[6] Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals. SIAM J. Numer. Anal. 39 (2001) 735-762. | MR | Zbl
, and ,[7] The existence of regular boundary points for non-linear elliptic systems. J. Reine Angew. Math. 602 (2007) 17-58. | MR | Zbl
, and ,[8] Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961) 22-34. | MR
,[9] Nilpotent energies in liquid crystal theory. Arch. Rational Mech. Anal. 10 (1962) 189-196. | MR | Zbl
,[10] Continuum theory of nematic liquid crystals. Res. Mechanica 21 (1987) 381-392.
,[11] On the theory of liquid crystals. Discuss. Faraday Soc. 25 (1958) 19-28.
,[12] An introduction to the mathematical theory of the Navier-Stokes equations I: Linearized steady problems, Springer Tracts in Natural Philosophy 38. Springer-Verlag, New York (1994). | MR | Zbl
,[13] Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model. Preprint (2009). | Zbl
and ,[14] Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. 84 (2005) 279-330. | MR | Zbl
, and ,[15] Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., The IMA Volumes in Mathematics and its Applications 5, Springer-Verlag, New York (1987). | MR | Zbl
and ,[16] Stability of singularities of minimizing harmonic maps. J. Differential Geom. 29 (1989) 113-123. | MR | Zbl
and ,[17] Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105 (1986) 547-570. | MR | Zbl
, and ,[18] A saddle point approach to the computation of harmonic maps. SIAM J. Numer. Anal. 47 (2009) 1500-1523. | MR | Zbl
, and ,[19] Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99-125. | MR | Zbl
and ,[20] Some constitutive equations for liquid crystals. Arch. Rational Mech. Anal. 28 (1968) 265-283. | MR | Zbl
,[21] Theory of flow phenomenum in liquid crystals, in The Theory of Liquid Crystals 4, W. Brown Ed., Academic Press, New York (1979) 1-81.
,[22] Mathematics theory of liquid crystals, in Applied Mathematics At The Turn Of Century: Lecture notes of the 1993 summer school, Universidat Complutense de Madrid (1995).
,[23] Solutions of Ginzburg-Landau equations and critical points of renormalized energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 599-622. | Numdam | MR | Zbl
,[24] Some dynamic properties of Ginzburg-Landau vorticies. Comm. Pure Appl. Math. 49 (1996) 323-359. | MR | Zbl
,[25] Nonparabolic dissipative systems, modeling the flow of liquid crystals. Comm. Pure Appl. Math. XLVIII (1995) 501-537. | MR | Zbl
and ,[26] Existence of solutions for the Ericksen-Leslie system. Arch. Rational Mech. Anal. 154 (2000) 135-156. | MR | Zbl
and ,[27] An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227 (2007) 1411-1427. | MR | Zbl
, and ,[28] Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37 (2000) 725-741. | MR | Zbl
and ,[29] Mixed Methods for the Approximation of Liquid Crystal Flows. ESAIM: M2AN 36 (2002) 205-222. | Numdam | MR | Zbl
and ,[30] Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006) 355-426. | MR | Zbl
,[31] The theory of liquid crystals. Trans. Faraday Soc. 29 (1933) 883-889. | Zbl
,[32] The Static and Dynamic Continuum Theory of Liquid Crystals: a Mathematical Introduction. Taylor & Francis Inc., New York (2004).
,[33] Variational theories for liquid crystals, Appl. Math. Math. Comput. 8. Chapman & Hall, London (1994). | MR | Zbl
,[34] Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010) 4680-4710. | MR | Zbl
,Cité par Sources :