We consider multiscale systems for which only a fine-scale model describing the evolution of individuals (atoms, molecules, bacteria, agents) is given, while we are interested in the evolution of the population density on coarse space and time scales. Typically, this evolution is described by a coarse Fokker-Planck equation. In this paper, we consider a numerical procedure to compute the solution of this Fokker-Planck equation directly on the coarse level, based on the estimation of the unknown parameters (drift and diffusion) using only appropriately chosen realizations of the fine-scale, individual-based system. As these parameters might be space- and time-dependent, the estimation is performed in every spatial discretization point and at every time step. If the fine-scale model is stochastic, the estimation procedure introduces noise on the coarse level. We investigate stability conditions for this procedure in the presence of this noise and present an analysis of the propagation of the estimation error in the numerical solution of the coarse Fokker-Planck equation.
Mots-clés : multiscale computing, stochastic systems, Fokker-Planck equation, uncertainty propagation
@article{M2AN_2011__45_3_541_0, author = {Frederix, Yves and Samaey, Giovanni and Roose, Dirk}, title = {An analysis of noise propagation in the multiscale simulation of coarse {Fokker-Planck} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {541--561}, publisher = {EDP-Sciences}, volume = {45}, number = {3}, year = {2011}, doi = {10.1051/m2an/2010066}, mrnumber = {2804650}, zbl = {1269.82051}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010066/} }
TY - JOUR AU - Frederix, Yves AU - Samaey, Giovanni AU - Roose, Dirk TI - An analysis of noise propagation in the multiscale simulation of coarse Fokker-Planck equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 541 EP - 561 VL - 45 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010066/ DO - 10.1051/m2an/2010066 LA - en ID - M2AN_2011__45_3_541_0 ER -
%0 Journal Article %A Frederix, Yves %A Samaey, Giovanni %A Roose, Dirk %T An analysis of noise propagation in the multiscale simulation of coarse Fokker-Planck equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 541-561 %V 45 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010066/ %R 10.1051/m2an/2010066 %G en %F M2AN_2011__45_3_541_0
Frederix, Yves; Samaey, Giovanni; Roose, Dirk. An analysis of noise propagation in the multiscale simulation of coarse Fokker-Planck equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 3, pp. 541-561. doi : 10.1051/m2an/2010066. http://archive.numdam.org/articles/10.1051/m2an/2010066/
[1] Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation approach. Econometrica 70 (2002) 223-262. | MR | Zbl
,[2] Multiscale dynamics of biological cells with chemotactic interactions: From a discrete stochastic model to a continuous description. Phys. Rev. E 73 (2006) 051901. | MR
, , and ,[3] W. E and B. Engquist, The heterogeneous multi-scale methods. Commun. Math. Sci. 1 (2003) 87-132. | Zbl
[4] W. E, D. Liu and E. Vanden-Eijnden, Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math. 58 (2005) 1544-1585. | MR | Zbl
[5] W. E, B. Engquist, X. Li, W. Ren and E. Vanden-Eijnden, Heterogeneous multiscale methods: A review. Commun. Comput. Phys. 2 (2007) 367-450. | MR | Zbl
[6] From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modeling in biology. SIAM Multiscale Model. Simul. 3 (2005) 362-394. | MR | Zbl
and ,[7] A computational strategy for multiscale systems with applications to Lorenz 96 model. J. Comput. Phys. 200 (2004) 605-638. | MR | Zbl
and ,[8] A drift-filtered approach to diffusion estimation for multiscale processes, in Coping with complexity: model reduction and data analysis, Lecture Notes in Computational Science and Engineering 75, Springer-Verlag (2010). | MR
and ,[9] Lifting in equation-free methods for molecular dynamics simulations of dense fluids. Discrete Continuous Dyn. Syst. Ser. B 11 (2009) 855-874. | MR
, , , , and ,[10] Projective integration methods for distributions. Technical report, NEC Research Institute (2001).
,[11] Projecting to a slow manifold: Singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4 (2005) 711-732. | MR | Zbl
, , and ,[12] Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17 (2004) R55-R127. | MR | Zbl
, and ,[13] Toeplitz and circulant matrices: A review. Found. Trends Commun. Inf. Theory 2 (2005) 155-239. | Zbl
,[14] On a variance reduction technique for micro-macro simulations of polymeric fluids. J. Non-Newton. Fluid Mech. 122 (2004) 91-106. | Zbl
, and ,[15] Equation-free multiscale computation: Algorithms and applications. Ann. Rev. Phys. Chem. 60 (2009) 321-344.
and ,[16] Equation-free, coarse-grained multiscale computation: Enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715-762. | MR | Zbl
, , , , and ,[17] Brownian configuration fields and variance reduced CONNFFESSIT. J. Non-Newton. Fluid Mech. 70 (1997) 255-261.
, and ,[18] Multiscale Methods: Averaging and Homogenization, Texts in Applied Mathematics 53. Springer, New York (2007). | MR | Zbl
and ,[19] Parameter estimation for multiscale diffusions. J. Stat. Phys. 127 (2007) 741-781. | MR | Zbl
and ,[20] Remarks on drift estimation for diffusion processes. SIAM Multiscale Model. Simul. 8 (2009) 69-95. | MR | Zbl
, and ,[21] The Fokker-Planck Equation: Methods of Solutions and Applications. Springer Series in Synergetics, Second Edition, Springer (1989). | MR | Zbl
,[22] Simulating individual-based models of bacterial chemotaxis with asymptotic variance reduction. INRIA, inria-00425065, available at http://hal.inria.fr/inria-00425065/fr/ (2009). | Zbl
and ,[23] Asymptotic methods in the theory of stochastic differential equations, Translations of mathematical monographs 78. AMS, Providence (1999). | Zbl
,[24] Elimination of fast variables. Phys. Rep. 124 (1985) 69-160. | MR
,[25] Mesoscale analysis of the equation-free constrained runs initialization scheme. SIAM Multiscale Model. Simul. 6 (2007) 1234-1255. | MR | Zbl
, and ,[26] Numerical techniques for multi-scale dynamical systems with stochastic effects. Commun. Math. Sci. 1 (2003) 385-391. | MR | Zbl
,Cité par Sources :