The aim of this paper is to develop a finite element method which allows computing the buckling coefficients and modes of a non-homogeneous Timoshenko beam. Studying the spectral properties of a non-compact operator, we show that the relevant buckling coefficients correspond to isolated eigenvalues of finite multiplicity. Optimal order error estimates are proved for the eigenfunctions as well as a double order of convergence for the eigenvalues using classical abstract spectral approximation theory for non-compact operators. These estimates are valid independently of the thickness of the beam, which leads to the conclusion that the method is locking-free. Numerical tests are reported in order to assess the performance of the method.
Mots-clés : finite element approximation, eigenvalue problems, Timoshenko beams
@article{M2AN_2011__45_4_603_0, author = {Lovadina, Carlo and Mora, David and Rodr{\'\i}guez, Rodolfo}, title = {A locking-free finite element method for the buckling problem of a non-homogeneous {Timoshenko} beam}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {603--626}, publisher = {EDP-Sciences}, volume = {45}, number = {4}, year = {2011}, doi = {10.1051/m2an/2010071}, mrnumber = {2804652}, zbl = {1267.74049}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010071/} }
TY - JOUR AU - Lovadina, Carlo AU - Mora, David AU - Rodríguez, Rodolfo TI - A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 603 EP - 626 VL - 45 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010071/ DO - 10.1051/m2an/2010071 LA - en ID - M2AN_2011__45_4_603_0 ER -
%0 Journal Article %A Lovadina, Carlo %A Mora, David %A Rodríguez, Rodolfo %T A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 603-626 %V 45 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010071/ %R 10.1051/m2an/2010071 %G en %F M2AN_2011__45_4_603_0
Lovadina, Carlo; Mora, David; Rodríguez, Rodolfo. A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 4, pp. 603-626. doi : 10.1051/m2an/2010071. http://archive.numdam.org/articles/10.1051/m2an/2010071/
[1] Discretization by finite elements of a model parameter dependent problem. Numer. Math. 37 (1981) 405-421. | MR | Zbl
,[2] Eigenvalue Problems, in Handbook of Numerical Analysis II, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991) 641-787. | MR | Zbl
and ,[3] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl
and ,[4] Numerical approximation of the spectra of non-compact operators arising in buckling problems. J. Numer. Math. 10 (2002) 193-219. | MR | Zbl
and ,[5] On spectral approximation. Part 1: The problem of convergence. RAIRO Anal. Numér. 12 (1978) 97-112. | Numdam | MR | Zbl
, and ,[6] On spectral approximation. Part 2: Error estimates for the Galerkin method. RAIRO Anal. Numér. 12 (1978) 113-119. | Numdam | MR | Zbl
, and ,[7] Finite Elements for the Reissner-Mindlin Plate, in Mixed Finite Elements, Compatibility Conditions, and Applications, D. Boffi and L. Gastaldi Eds., Springer-Verlag, Berlin (2008) 195-230. | Zbl
,[8] Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry. IMA J. Numer. Anal. 29 (2009) 180-207. | MR | Zbl
, , and ,[9] Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1966). | MR | Zbl
,[10] Approximation of the buckling problem for Reissner-Mindlin plates. SIAM J. Numer. Anal. 48 (2010) 603-632. | MR
, and ,[11] An Introduction to the Finite Element Method. McGraw-Hill, New York (1993). | Zbl
,[12] Linear models of buckling and stress-stiffening. Comput. Methods Appl. Mech. Eng. 171 (1999) 43-59. | Zbl
and ,Cité par Sources :