We prove a posteriori error estimates of optimal order for linear Schrödinger-type equations in the L∞(L2)- and the L∞(H1)-norm. We discretize only in time by the Crank-Nicolson method. The direct use of the reconstruction technique, as it has been proposed by Akrivis et al. in [Math. Comput. 75 (2006) 511-531], leads to a posteriori upper bounds that are of optimal order in the L∞(L2)-norm, but of suboptimal order in the L∞(H1)-norm. The optimality in the case of L∞(H1)-norm is recovered by using an auxiliary initial- and boundary-value problem.
Mots-clés : linear Schrödinger equation, Crank-Nicolson method, crank-nicolson reconstruction, a posteriori error analysis, energy techniques, L∞(L2)- and L∞(H1)-norm
@article{M2AN_2011__45_4_761_0, author = {Kyza, Irene}, title = {\protect\emph{A posteriori} error analysis for the {Crank-Nicolson} method for linear {Schr\"odinger} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {761--778}, publisher = {EDP-Sciences}, volume = {45}, number = {4}, year = {2011}, doi = {10.1051/m2an/2010101}, zbl = {1269.65088}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2010101/} }
TY - JOUR AU - Kyza, Irene TI - A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 761 EP - 778 VL - 45 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2010101/ DO - 10.1051/m2an/2010101 LA - en ID - M2AN_2011__45_4_761_0 ER -
%0 Journal Article %A Kyza, Irene %T A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 761-778 %V 45 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2010101/ %R 10.1051/m2an/2010101 %G en %F M2AN_2011__45_4_761_0
Kyza, Irene. A posteriori error analysis for the Crank-Nicolson method for linear Schrödinger equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 4, pp. 761-778. doi : 10.1051/m2an/2010101. http://archive.numdam.org/articles/10.1051/m2an/2010101/
[1] On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation. RAIRO Modél. Math. Anal. Numér. 25 (1991) 643-670. | Numdam | MR | Zbl
and ,[2] A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comput. 75 (2006) 511-531. | MR | Zbl
, and ,[3] Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math. 114 (2009) 133-160. | MR | Zbl
, and ,[4] Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains. Bull. Soc. Math. France 136 (2008) 27-65. | Numdam | MR | Zbl
,[5] Quantum Theory. Dover Publications, New York (1979).
,[6] Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type. Ph.D. thesis, University of Göteborg (1980).
,[7] Mathematical Analysis and Numerical Methods for Science and Technology 5, Evolution Problems I. Second edition, Springer-Verlag, Berlin (2000). | MR | Zbl
and ,[8] A time-and space-adaptive algorithm for the linear time-dependent Schrödinger equation. Numer. Math. 73 (1996) 419-448. | MR | Zbl
,[9] Partial Differential Equations. Second edition, American Mathematical Society, Providence (2002). | MR
,[10] Convergence of logarithmic quantum mechanics to the linear one. Lett. Math. Phys. 81 (2007) 253-264. | MR | Zbl
,[11] A posteriori error estimates in the L∞(L2)-norm for Crank-Nicolson fully discrete approximations for linear Schrödinger equations. Preprint.
and ,[12] A space-time finite element method for the nonlinear Schrodinger equation: the discontinuous Galerkin method. Math. Comput. 67 (1998) 479-499. | MR | Zbl
and ,[13] A space-time finite element method for the nonlinear Schrodinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36 (1999) 1779-1807. | MR | Zbl
and ,[14] A posteriori error estimates for approximations of semilinear parabolic and Schrödinger-type equations. Ph.D. thesis, University of Crete (2009).
,[15] Problèmes aux limites non homogènes et applications 2. Dunod, Paris (1968). | MR | Zbl
and ,[16] An anisotropic error estimator for the Crank-Nicolson method: Application to a parabolic problem. SIAM J. Sci. Comput. 31 (2009) 2757-2783. | MR | Zbl
, and ,[17] Space and time reconstructions in a posteriori analysis of evolution problems. ESAIM: Proc. 21 (2007) 31-44. | MR | Zbl
,[18] Quantum Optics. Cambridge University Press (2002).
and ,[19] Galerkin Finite Element Methods for Parabolic Problems. Second edition, Springer-Verlag, Berlin (2006). | Zbl
,[20] A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195-212. | MR | Zbl
,Cité par Sources :