Surface energies in a two-dimensional mass-spring model for crystals
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 5, pp. 873-899.

We study an atomistic pair potential-energy E(n)(y) that describes the elastic behavior of two-dimensional crystals with n atoms where y 2×n characterizes the particle positions. The main focus is the asymptotic analysis of the ground state energy as n tends to infinity. We show in a suitable scaling regime where the energy is essentially quadratic that the energy minimum of E(n) admits an asymptotic expansion involving fractional powers of n: min y E (n) (y)=nE bulk +nE surface +o(n),n. The bulk energy density Ebulk is given by an explicit expression involving the interaction potentials. The surface energy Esurface can be expressed as a surface integral where the integrand depends only on the surface normal and the interaction potentials. The evaluation of the integrand involves solving a discrete algebraic Riccati equation. Numerical simulations suggest that the integrand is a continuous, but nowhere differentiable function of the surface normal.

DOI : 10.1051/m2an/2010106
Classification : 74Q05
Mots-clés : continuum mechanics, difference equations
@article{M2AN_2011__45_5_873_0,
     author = {Theil, Florian},
     title = {Surface energies in a two-dimensional mass-spring model for crystals},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {873--899},
     publisher = {EDP-Sciences},
     volume = {45},
     number = {5},
     year = {2011},
     doi = {10.1051/m2an/2010106},
     mrnumber = {2817548},
     zbl = {1269.82065},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2010106/}
}
TY  - JOUR
AU  - Theil, Florian
TI  - Surface energies in a two-dimensional mass-spring model for crystals
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2011
SP  - 873
EP  - 899
VL  - 45
IS  - 5
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2010106/
DO  - 10.1051/m2an/2010106
LA  - en
ID  - M2AN_2011__45_5_873_0
ER  - 
%0 Journal Article
%A Theil, Florian
%T Surface energies in a two-dimensional mass-spring model for crystals
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2011
%P 873-899
%V 45
%N 5
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2010106/
%R 10.1051/m2an/2010106
%G en
%F M2AN_2011__45_5_873_0
Theil, Florian. Surface energies in a two-dimensional mass-spring model for crystals. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 5, pp. 873-899. doi : 10.1051/m2an/2010106. http://archive.numdam.org/articles/10.1051/m2an/2010106/

[1] R. Alicandro, A. Braides and M. Cicalese, Continuum limits of discrete films with superlinear growth densities. Calc. Var. Par. Diff. Eq. 33 (2008) 267-297. | MR | Zbl

[2] S. Aubry, The twist map, the extended Frenkel-Kontorova model and the devil's staircase. Physica D 7 (1983) 240-258. | MR | Zbl

[3] X. Blanc, C. Le Bris and P.L. Lions, From molecular models to continuum mechanics. Arch. Rat. Mech. Anal. 164 (2002) 341-381. | MR | Zbl

[4] A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems. Math. Models Meth. Appl. Sci. 17 (2007) 985-1037. | MR | Zbl

[5] A. Braides and A. Defranchesi, Homogenisation of multiple integrals. Oxford University Press (1998). | Zbl

[6] A. Braides and M. Gelli, Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7 (2002) 41-66. | MR | Zbl

[7] A. Braides, M. Solci and E. Vitali, A derivation of linear alastic energies from pair-interaction atomistic systems. Netw. Heterog. Media 9 (2007) 551-567. | MR | Zbl

[8] J. Cahn, J. Mallet-Paret and E. Van Vleck, Travelling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59 (1998) 455-493. | MR | Zbl

[9] M. Charlotte and L. Truskinovsky, Linear elastic chain with a hyper-pre-stress. J. Mech. Phys. Solids 50 (2002) 217-251. | MR | Zbl

[10] W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: static problems. Arch. Rat. Mech. Anal. 183 (2005) 241-297. | MR | Zbl

[11] I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119 (1991) 125-136. | MR | Zbl

[12] G. Friesecke and F. Theil, Validitity and failure of the Cauchy-Born rule in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12 (2002) 445-478. | MR | Zbl

[13] G. Friesecke, R. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461-1506. | MR | Zbl

[14] D. Gérard-Varet and N. Masmoudi, Homogenization and boundary layer. Preprint available at www.math.nyu.edu/faculty/masmoudi/homog_Varet3.pdf (2010). | Zbl

[15] P. Lancaster and L. Rodman, Algebraic Riccati Equations. Oxford University Press (1995). | MR | Zbl

[16] J.L. Lions, Some methods in the mathematical analysis of systems and their controls. Science Press, Beijing, Gordon and Breach, New York (1981). | MR | Zbl

[17] J.A. Nitsche, On Korn's second inequality. RAIRO Anal. Numér. 15 (1981) 237-248. | Numdam | MR | Zbl

[18] C. Radin, The ground state for soft disks. J. Stat. Phys. 26 (1981) 367-372. | MR

[19] B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models. Multiscale Mod. Sim. 5 (2006) 664-694. | MR | Zbl

[20] B. Schmidt, On the passage from atomic to continuum theory for thin films. Arch. Rat. Mech. Anal. 190 (2008) 1-55. | MR | Zbl

[21] B. Schmidt, On the derivation of linear elasticity from atomistic models. Net. Heterog. Media 4 (2009) 789-812. | MR | Zbl

[22] E. Sonntag, Mathematical Control Theory. Second edition, Springer (1998).

[23] L. Tartar, The general theory of homogenization. Springer (2010). | MR | Zbl

[24] F. Theil, A proof of crystallization in a two dimensions. Comm. Math. Phys. 262 (2006) 209-236. | MR | Zbl

Cité par Sources :