Numerical integration for high order pyramidal finite elements
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 2, pp. 239-263.

We examine the effect of numerical integration on the accuracy of high order conforming pyramidal finite element methods. Non-smooth shape functions are indispensable to the construction of pyramidal elements, and this means the conventional treatment of numerical integration, which requires that the finite element approximation space is piecewise polynomial, cannot be applied. We develop an analysis that allows the finite element approximation space to include non-smooth functions and show that, despite this complication, conventional rules of thumb can still be used to select appropriate quadrature methods on pyramids. Along the way, we present a new family of high order pyramidal finite elements for each of the spaces of the de Rham complex.

DOI : 10.1051/m2an/2011042
Classification : 65N30, 65D30
Mots-clés : finite elements, quadrature, pyramid
@article{M2AN_2012__46_2_239_0,
     author = {Nigam, Nilima and Phillips, Joel},
     title = {Numerical integration for high order pyramidal finite elements},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {239--263},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {2},
     year = {2012},
     doi = {10.1051/m2an/2011042},
     mrnumber = {2855642},
     zbl = {1276.65083},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2011042/}
}
TY  - JOUR
AU  - Nigam, Nilima
AU  - Phillips, Joel
TI  - Numerical integration for high order pyramidal finite elements
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2012
SP  - 239
EP  - 263
VL  - 46
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2011042/
DO  - 10.1051/m2an/2011042
LA  - en
ID  - M2AN_2012__46_2_239_0
ER  - 
%0 Journal Article
%A Nigam, Nilima
%A Phillips, Joel
%T Numerical integration for high order pyramidal finite elements
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2012
%P 239-263
%V 46
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2011042/
%R 10.1051/m2an/2011042
%G en
%F M2AN_2012__46_2_239_0
Nigam, Nilima; Phillips, Joel. Numerical integration for high order pyramidal finite elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 2, pp. 239-263. doi : 10.1051/m2an/2011042. http://archive.numdam.org/articles/10.1051/m2an/2011042/

[1] D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Num. 15 (2006) 1-155. | MR | Zbl

[2] D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47 (2010) 281-354. | MR | Zbl

[3] M. Bergot, G. Cohen and M. Duruflé, Higher-order finite elements for hybrid meshes using new nodal pyramidal elements. J. Sci. Comput. 42 (2010) 345-381. | MR | Zbl

[4] J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112-124. | MR | Zbl

[5] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Springer Verlag (2008). | MR | Zbl

[6] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Society for Industrial Mathematics (2002). | MR | Zbl

[7] J.L. Coulomb, F.X. Zgainski and Y. Maréchal, A pyramidal element to link hexahedral, prismatic and tetrahedral edge finite elements. IEEE Trans. Magn. 33 (1997) 1362-1365.

[8] L. Demkowicz and A. Buffa, H1, H( curl ) and H( div )-conforming projection-based interpolation in three dimensions. Quasi-optimal p-interpolation estimates. Comput. Methods Appl. Mech. Eng. 194 (2005) 267-296. | MR | Zbl

[9] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszenski and W. Rachowicz, Computing with hp-Adaptive Finite Elements Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications 2. Chapman & Hall (2007). | Zbl

[10] M. Fortin and F. Brezzi, Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics). Springer-Verlag Berlin and Heidelberg GmbH & Co. K (1991). | MR | Zbl

[11] V. Gradinaru and R. Hiptmair, Whitney elements on pyramids. Electronic Transactions on Numerical Analysis 8 (1999) 154-168. | MR | Zbl

[12] R.D. Graglia and I.L. Gheorma, Higher order interpolatory vector bases on pyramidal elements. IEEE Trans. Antennas Propag. 47 (1999) 775. | Zbl

[13] P.C. Hammer, O.J. Marlowe and A.H. Stroud, Numerical integration over simplexes and cones. Mathematical Tables Aids Comput. 10 (1956) 130-137. | MR | Zbl

[14] J.M. Melenk, K. Gerdes and C. Schwab, Fully discrete hp-finite elements: Fast quadrature. Comput. Methods Appl. Mech. Eng. 190 (2001) 4339-4364. | Zbl

[15] P. Monk, Finite element methods for Maxwell's equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). | MR | Zbl

[16] J.-C. Nedéléc, Mixed finite elements in 3 . Num. Math. 35 (1980) 315-341. | Zbl

[17] N. Nigam and J. Phillips, High-order conforming finite elements on pyramids. IMA J. Numer. Anal. (2011); doi: 10.1093/imanum/drr015. | MR | Zbl

[18] A.H. Stroud, Approximate calculation of multiple integrals. Prentice-Hall Inc., Englewood Cliffs, N.J. (1971). | MR | Zbl

[19] J. Warren, On the uniqueness of barycentric coordinates, in Topics in Algebraic Geometry and Geometric Modeling: Workshop on Algebraic Geometry and Geometric Modeling, July 29-August 2, 2002, Vilnius University, Lithuania. American Mathematical Society 334 (2002) 93-99. | MR | Zbl

[20] C. Wieners, Conforming discretizations on tetrahedrons, pyramids, prisms and hexahedrons. Technical report, University of Stuttgart.

[21] S. Zaglmayr, High Order Finite Element methods for Electromagnetic Field Computation. Ph. D. thesis, Johannes Kepler University, Linz (2006).

[22] F.-X. Zgainski, J.-L. Coulomb, Y. Marechal, F. Claeyssen and X. Brunotte, A new family of finite elements: the pyramidal elements. IEEE Trans. Magn. 32 (1996) 1393-1396.

Cité par Sources :