An iterative implementation of the implicit nonlinear filter
ESAIM: Mathematical Modelling and Numerical Analysis , Special volume in honor of Professor David Gottlieb. Numéro spécial, Tome 46 (2012) no. 3, pp. 535-543.

Implicit sampling is a sampling scheme for particle filters, designed to move particles one-by-one so that they remain in high-probability domains. We present a new derivation of implicit sampling, as well as a new iteration method for solving the resulting algebraic equations.

DOI : 10.1051/m2an/2011055
Classification : 60G35, 62M20, 86A05
Mots-clés : implicit sampling, filter, reference density, jacobian, iteration, particles
@article{M2AN_2012__46_3_535_0,
     author = {Chorin, Alexandre J. and Tu, Xuemin},
     title = {An iterative implementation of the implicit nonlinear filter},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {535--543},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {3},
     year = {2012},
     doi = {10.1051/m2an/2011055},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2011055/}
}
TY  - JOUR
AU  - Chorin, Alexandre J.
AU  - Tu, Xuemin
TI  - An iterative implementation of the implicit nonlinear filter
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2012
SP  - 535
EP  - 543
VL  - 46
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2011055/
DO  - 10.1051/m2an/2011055
LA  - en
ID  - M2AN_2012__46_3_535_0
ER  - 
%0 Journal Article
%A Chorin, Alexandre J.
%A Tu, Xuemin
%T An iterative implementation of the implicit nonlinear filter
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2012
%P 535-543
%V 46
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2011055/
%R 10.1051/m2an/2011055
%G en
%F M2AN_2012__46_3_535_0
Chorin, Alexandre J.; Tu, Xuemin. An iterative implementation of the implicit nonlinear filter. ESAIM: Mathematical Modelling and Numerical Analysis , Special volume in honor of Professor David Gottlieb. Numéro spécial, Tome 46 (2012) no. 3, pp. 535-543. doi : 10.1051/m2an/2011055. http://archive.numdam.org/articles/10.1051/m2an/2011055/

[1] M. Arulampalam, S. Maskell, N. Gordon and T. Clapp, A tutorial on particle filters for online nonlinear/nongaussian Bayesia tracking. IEEE Trans. Signal Process. 50 (2002) 174-188.

[2] P. Bickel, B. Li and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions. IMS Collections : Pushing the Limits of Contemporary Statistics : Contributions in Honor of Jayanta K. Ghosh 3 (2008) 318-329. | MR

[3] S. Bozic, Digital and Kalman Filtering. Butterworth-Heinemann, Oxford (1994). | Zbl

[4] A.J. Chorin and P. Krause, Dimensional reduction for a Bayesian filter. Proc. Natl. Acad. Sci. USA 101 (2004) 15013-15017. | MR | Zbl

[5] A.J. Chorin and X. Tu, Implicit sampling for particle filters. Proc. Natl. Acad. Sc. USA 106 (2009) 17249-17254.

[6] A.J. Chorin, M. Morzfeld and X. Tu, Implicit particle filters for data assimilation. Commun. Appl. Math. Comput. Sci. 5 (2010) 221-240. | MR | Zbl

[7] A. Doucet and A. Johansen, Particle filtering and smoothing : Fifteen years later, in Handbook of Nonlinear Filtering, edited by D. Crisan and B. Rozovsky, to appear.

[8] A. Doucet, S. Godsill and C. Andrieu, On sequential Monte Carlo sampling methods for Bayesian filtering. Stat. Comput. 10 (2000) 197-208.

[9] A. Doucet, N. De Freitas and N. Gordon, Sequential Monte Carlo Methods in Practice. Springer, New York (2001). | MR | Zbl

[10] M. Dowd, A sequential Monte Carlo approach for marine ecological prediction. Environmetrics 17 (2006) 435-455. | MR

[11] W. Gilks and C. Berzuini, Following a moving target-Monte Carlo inference for dynamic Bayesian models. J. Roy. Statist. Soc. B 63 (2001) 127-146. | MR | Zbl

[12] J. Liu and C. Sabatti, Generalized Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika 87 (2000) 353-369. | MR | Zbl

[13] S. Maceachern, M. Clyde and J. Liu, Sequential importance sampling for nonparametric Bayes models : the next generation. Can. J. Stat. 27 (1999) 251-267. | MR | Zbl

[14] M. Morzfeld, X. Tu, E. Atkins and A.J. Chorin, A random map implementation of implicit filters. Submitted to J. Comput. Phys. | Zbl

[15] C. Snyder, T. Bengtsson, P. Bickel and J. Anderson, Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 136 (2008) 4629-4640.

Cité par Sources :