In this paper, we present a superconvergence result for the mixed finite element approximations of general second order elliptic eigenvalue problems. It is known that a superconvergence result has been given by Durán et al. [Math. Models Methods Appl. Sci. 9 (1999) 1165-1178] and Gardini [ESAIM: M2AN 43 (2009) 853-865] for the lowest order Raviart-Thomas approximation of Laplace eigenvalue problems. In this work, we introduce a new way to derive the superconvergence of general second order elliptic eigenvalue problems by general mixed finite element methods which have the commuting diagram property. Some numerical experiments are given to confirm the theoretical analysis.
Mots-clés : second order elliptic eigenvalue problem, mixed finite element method, superconvergence
@article{M2AN_2012__46_4_797_0, author = {Lin, Qun and Xie, Hehu}, title = {A {Superconvergence} result for mixed finite element approximations of the eigenvalue problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {797--812}, publisher = {EDP-Sciences}, volume = {46}, number = {4}, year = {2012}, doi = {10.1051/m2an/2011065}, mrnumber = {2891470}, zbl = {1277.65091}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2011065/} }
TY - JOUR AU - Lin, Qun AU - Xie, Hehu TI - A Superconvergence result for mixed finite element approximations of the eigenvalue problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 797 EP - 812 VL - 46 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2011065/ DO - 10.1051/m2an/2011065 LA - en ID - M2AN_2012__46_4_797_0 ER -
%0 Journal Article %A Lin, Qun %A Xie, Hehu %T A Superconvergence result for mixed finite element approximations of the eigenvalue problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 797-812 %V 46 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2011065/ %R 10.1051/m2an/2011065 %G en %F M2AN_2012__46_4_797_0
Lin, Qun; Xie, Hehu. A Superconvergence result for mixed finite element approximations of the eigenvalue problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 4, pp. 797-812. doi : 10.1051/m2an/2011065. http://archive.numdam.org/articles/10.1051/m2an/2011065/
[1] Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp. 52 (1989) 275-297. | MR | Zbl
and ,[2] Eigenvalue Problems, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1), edited by P.G. Lions and P.G. Ciarlet. North-Holland, Amsterdam (1991) 641-787. | MR | Zbl
and ,[3] Regularity estimates for the solutions of the equations of linear elasticity in convex plane polygonal domain, Special issue dedicated to Lawrence E. Payne. Z. Angew. Math. Phys. 54 (2003) 874-878. | MR | Zbl
and ,[4] Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1-120. | MR | Zbl
,[5] On the convergence of eigenvalues for mixed fomulations. Ann. Scuola Norm. Sup. Pisa Cl. Sci 25 (1997) 131-154. | EuDML | Numdam | MR | Zbl
, and ,[6] On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69 (2000) 121-140. | MR | Zbl
, and ,[7] The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | MR | Zbl
and ,[8] MixedandHybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl
and ,[9] Spectral Approximation of Linear Operators. Academic Press Inc., New York (1983). | MR | Zbl
,[10] Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44 (1985) 39-52. | MR | Zbl
and ,[11] A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9 (1999) 1165-1178. | MR | Zbl
, and ,[12] A posteriori error estimates for an eigenvalue problem arising from fluid-structure interaction. Instituto Lombardo (Rend. Sc.) (2004) 138. | MR | Zbl
,[13] Mixed approximation of eigenvalue problems : a superconvergence result. ESAIM : M2AN 43 (2009) 853-865. | Numdam | MR | Zbl
,[14] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986). | MR | Zbl
and ,[15] Singularities in Boundary Problems. MASSON and Springer-Verlag (1985). | Zbl
,[16] Finite Element Methods : Accuracy and Inprovement. China Sci. Tech. Press (2005).
and ,[17] Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method. Appl. Numer. Math. 59 (2009) 1884-1893. | MR | Zbl
and ,[18] The Construction and Analysis of High Efficiency Finite Element Methods. HeBei University Publishers (1995) (in Chinese)
and ,[19] New expansion of numerical eigenvalue for − Δu = λρu by nonconforming elements. Math. Comp. 77 (2008) 2061-2084. | MR | Zbl
, and ,[20] Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36 (1981) 427-453. | MR | Zbl
, , and ,[21] Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13 (1976) 185-197. | MR | Zbl
,Cité par Sources :