We consider a strongly magnetized plasma described by a Vlasov-Poisson system with a large external magnetic field. The finite Larmor radius scaling allows to describe its behaviour at very fine scales. We give a new interpretation of the asymptotic equations obtained by Frénod and Sonnendrücker [SIAM J. Math. Anal. 32 (2001) 1227-1247] when the intensity of the magnetic field goes to infinity. We introduce the so-called polarization drift and show that its contribution is not negligible in the limit, contrary to what is usually said. This is due to the non linear coupling between the Vlasov and Poisson equations.
Mots-clés : Vlasov-Poisson equation, strong magnetic field regime, finite larmor radius scaling, electric drift, polarization drift, oscillations in time
@article{M2AN_2012__46_4_929_0, author = {Han-Kwan, Daniel}, title = {Effect of the polarization drift in a strongly magnetized plasma}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {929--947}, publisher = {EDP-Sciences}, volume = {46}, number = {4}, year = {2012}, doi = {10.1051/m2an/2011068}, mrnumber = {2891475}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2011068/} }
TY - JOUR AU - Han-Kwan, Daniel TI - Effect of the polarization drift in a strongly magnetized plasma JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 929 EP - 947 VL - 46 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2011068/ DO - 10.1051/m2an/2011068 LA - en ID - M2AN_2012__46_4_929_0 ER -
%0 Journal Article %A Han-Kwan, Daniel %T Effect of the polarization drift in a strongly magnetized plasma %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 929-947 %V 46 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2011068/ %R 10.1051/m2an/2011068 %G en %F M2AN_2012__46_4_929_0
Han-Kwan, Daniel. Effect of the polarization drift in a strongly magnetized plasma. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 4, pp. 929-947. doi : 10.1051/m2an/2011068. http://archive.numdam.org/articles/10.1051/m2an/2011068/
[1] Homogenization and two-scale convergence. SIAM J. Math. Anal. XXIII (1992) 1482-1518. | MR | Zbl
,[2] Existence in the large of a weak solution of Vlasov's system of equations. Z. Vychisl. Mat. Mat. Fiz. 15 (1975) 136-147. | MR | Zbl
,[3] The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime. Asymptot. Anal. 61 (2009) 91-123. | MR | Zbl
,[4] Global existence of smooth solutions for the Vlasov-Fokker-Planck equations in 1 and 2 space dimensions. Ann. Sci. École Norm. Sup. 19 (1986) 519-542. | Numdam | MR | Zbl
,[5] Two-dimensional finite Larmor radius approximation in canonical gyrokinetic coordinates. J. Pure Appl. Math. : Adv. Appl. 4 (2010) 135-166. | MR | Zbl
and ,[6] The finite Larmor radius approximation. SIAM J. Math. Anal. 32 (2001) 1227-1247. | MR | Zbl
and ,[7] Two-scale numerical simulation of the weakly compressible 1D isentropic Euler equations. Numer. Math. 108 (2007) 263-293. | MR | Zbl
, and ,[8] Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method. Math. Models Methods Appl. Sci. 19 (2009) 175-197. | MR | Zbl
, and ,[9] Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solutions. KRM 2 (2009) 707-725. | MR | Zbl
, and ,[10] The Vlasov-Poisson system with strong magnetic field. J. Math. Pures Appl. 78 (1999) 791-817. | MR | Zbl
and ,[11] Global full-f gyrokinetic simulations of plasma turbulence. Plasma Phys. Control. Fusion 49 (2007) 173-182.
et al.,[12] The three-dimensional finite Larmor radius approximation. Asymptot. Anal. 66 (2010) 9-33. | MR | Zbl
,[13] On the three-dimensional finite Larmor radius approximation : the case of electrons in a fixed background of ions. Submitted (2010). | MR | Zbl
,[14] Size scaling of turbulent transport in magnetically confined plasmas. Phys. Rev. Lett. 88 (2002) 195004-1-195004-4.
, , and ,[15] Propagation of moments and regularity for the three-dimensional Vlasov-Poisson system. Invent. Math. 105 (1991) 415-430. | MR | Zbl
and ,[16] Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. KRM 2 (2009) 251-274. | MR | Zbl
,[17] A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | MR | Zbl
,[18] On classical solutions in the large in time of two-dimensional Vlasov's equation. Osaka J. Math. 15 (1978) 245-261. | MR | Zbl
and ,[19] Tokamaks.Clarendon Press-Oxford (2004). | Zbl
,Cité par Sources :