We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.
Mots-clés : fluid mechanics, Stokes equations, drag, roughness, homogenization, Navier boundary condition
@article{M2AN_2012__46_5_1201_0, author = {G\'erard-Varet, David and Hillairet, Matthieu}, title = {Computation of the drag force on a sphere close to a wall}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1201--1224}, publisher = {EDP-Sciences}, volume = {46}, number = {5}, year = {2012}, doi = {10.1051/m2an/2012001}, mrnumber = {2916378}, zbl = {1267.76020}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2012001/} }
TY - JOUR AU - Gérard-Varet, David AU - Hillairet, Matthieu TI - Computation of the drag force on a sphere close to a wall JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 1201 EP - 1224 VL - 46 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2012001/ DO - 10.1051/m2an/2012001 LA - en ID - M2AN_2012__46_5_1201_0 ER -
%0 Journal Article %A Gérard-Varet, David %A Hillairet, Matthieu %T Computation of the drag force on a sphere close to a wall %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 1201-1224 %V 46 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2012001/ %R 10.1051/m2an/2012001 %G en %F M2AN_2012__46_5_1201_0
Gérard-Varet, David; Hillairet, Matthieu. Computation of the drag force on a sphere close to a wall. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 5, pp. 1201-1224. doi : 10.1051/m2an/2012001. http://archive.numdam.org/articles/10.1051/m2an/2012001/
[1] Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147 (1998) 187-218. | MR | Zbl
, and ,[2] The influence of pressure-dependent density and viscosity on the elastohydrodynamic collision and rebound of two spheres. J. Fluid Mech. 209 (1989) 501-519.
and ,[3] Wall laws for fluid flows at a boundary with random roughness. Comm. Pure Appl. Math. 61 (2008) 941-987. | MR | Zbl
and ,[4] Flow boundary conditions from nano-to micro-scales. Soft Matt. 3 (2007) 985-693.
and ,[5] The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17 (1963) 561-595. | MR | Zbl
and ,[6] On compressible Navier-Stokes equations with density dependent viscosities in bounded domains. J. Math. Pures Appl. 87 (2007) 227-235. | MR | Zbl
, and ,[7] On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika 16 (1969) 37-49. | Zbl
and ,[8] Solid-solid contacts due to surface roughness and their effects on suspension behaviour. Philos. Transat. Ser. A Math. Phys. Eng. Sci. 361 (2003) 871-894. | MR | Zbl
, , and ,[9] The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163 (2006) 045302.
, and ,[10] The Navier wall law at a boundary with random roughness. Commun. Math. Phys. 286 (2009) 81-110. | MR | Zbl
,[11] Regularity issues in the problem of fluid structure interaction. Arch. Rational Mech. Anal. 195 (2010) 375-407. | MR | Zbl
and ,[12] Lack of collision between solid bodies in a 2D incompressible viscous flow. Commun. Partial Differ. Equ. 32 (2007) 1345-1371. | MR | Zbl
,[13] The effect of slip on the motion of a sphere close to a wall and of two adjacent sheres. J. Eng. Mech. 7 (1973) 207-221. | Zbl
,[14] Couette flows over a rough boundary and drag reduction. Commun. Math. Phys. 232 (2003) 429-455. | Zbl
and ,[15] Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. Phys. Rev. Lett. 102 (2009). | Zbl
, and ,[16] Random roughness hydrodynamic boundary conditions. Phys. Rev. Lett. 105 (2010) 016001.
, and ,[17] Microfluidics: The no-slip boundary condition (2007).
, and ,[18] Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513 (2004) 247-264. | Zbl
, , , and ,[19] Numerical simulation of gluey particles. ESAIM: M2AN 43 (2009) 53-80. | Numdam | MR | Zbl
,[20] Asymptotic analysis of laminar boundary-layer flow over finely grooved surfaces. Eur. J. Mech. B, Fluids 14 (1995) 169-195. | MR | Zbl
,[21] A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11 (1964) 67-74. | MR | Zbl
,[22] On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27 (1967) 705-724. | MR | Zbl
and ,[23] Measurement of the hydrodynamic surface roughness of noncolloidal spheres. Phys. Fluids 1 (1989) 52-60.
and ,[24] Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73 (1986) 479-487.
and ,Cité par Sources :