In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell's equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order reduction
Mots-clés : temporal convergence, discontinuous Galerkin method, time-domain Maxwell equations, component splitting, order reduction
@article{M2AN_2012__46_5_1225_0, author = {Moya, Ludovic}, title = {Temporal convergence of a locally implicit discontinuous {Galerkin} method for {Maxwell's} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1225--1246}, publisher = {EDP-Sciences}, volume = {46}, number = {5}, year = {2012}, doi = {10.1051/m2an/2012002}, mrnumber = {2916379}, zbl = {1277.78036}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2012002/} }
TY - JOUR AU - Moya, Ludovic TI - Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 1225 EP - 1246 VL - 46 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2012002/ DO - 10.1051/m2an/2012002 LA - en ID - M2AN_2012__46_5_1225_0 ER -
%0 Journal Article %A Moya, Ludovic %T Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 1225-1246 %V 46 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2012002/ %R 10.1051/m2an/2012002 %G en %F M2AN_2012__46_5_1225_0
Moya, Ludovic. Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell's equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 5, pp. 1225-1246. doi : 10.1051/m2an/2012002. http://archive.numdam.org/articles/10.1051/m2an/2012002/
[1] Numerical integration of damped maxwell equations. SIAM J. Sci. Comput. 31 (2009) 1322-1346. | MR | Zbl
and ,[2] Discontinuous Galerkin approximation of the Maxwell eigenproblem. SIAM J. Numer. Anal. 44 (2006) 2198-2226. | MR
and ,[3] An unconditionally stable discontinuous galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes. IEEE Trans. Magn. 44 (2008) 1250-1253.
, and ,[4] Discontinuous Galerkin methods. Theory, computation and applications. Springer-Verlag, Berlin (2000) | MR | Zbl
, and Eds.,[5] A spatial high order hexahedral discontinuous Galerkin method to solve Maxwell's equations in time-domain. J. Comput. Phys. 217 (2006) 340-363. | MR | Zbl
, and ,[6] Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Sci. Comput. 31 (2009) 1985-2014. | MR | Zbl
and ,[7] Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys. 229 (2010) 512-526. | MR | Zbl
, , and ,[8] Development of a hp-like discontinuous Galerkin time-domain method on non-conforming simplicial meshes for electromagnetic wave propagation. Int. J. Numer. Anal. Mod. 6 (2009) 193-216. | MR | Zbl
,[9] Richardson-extrapolated sequential splitting and its application. J. Comput. Appl. Math. 234 (2010) 3283-3302. | Zbl
, and ,[10] Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes. ESAIM : M2AN 39 (2005) 1149-1176. | Numdam | MR | Zbl
, , and ,[11] Explicit local time stepping methods for Maxwell's equations. J. Comput. Appl. Math. 234 (2010) 3283-3302. | MR | Zbl
and ,[12] Solving Ordinary Differential Equations II - Stiff and Differential-Algebraic problems, 2nd edition. Springer-Verlag, Berlin (1996). | MR | Zbl
and ,[13] Geometric Numerical Integration, 2nd edition. Springer-Verlag, Berlin (2002). | MR | Zbl
, and ,[14] Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell's equations. J. Comput. Phys. 181 (2002) 186-221. | MR | Zbl
and ,[15] Nodal Discontinuous Galerkin Methods. Springer (2008). | MR | Zbl
and ,[16] Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer-Verlag, Berlin (2003). | MR | Zbl
and ,[17] The Finite Element Method in Electromagnetics, 2nd edition. Wiley-IEEE Press (2002). | MR | Zbl
,[18] Local theory of extrapolation methods. Numer. Algorithm 53 (2010) 321-342 | MR | Zbl
,[19] On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16 (1995) 151-168. | MR | Zbl
,[20] Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell's equations. J. Comput. Phys. 227 (2008) 6795-6820. | MR | Zbl
, , and ,[21] Mixed finite elements in R3. Numer. Math. 35 (1980) 315-341. | Zbl
,[22] A new dfamily of mixed finite elements in R3. Numer. Math. 50 (1986) 57-81. | Zbl
,[23] Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problem. ESAIM : M2AN 40 (2006) 815-841. | Numdam | MR | Zbl
,[24] A new finite volume scheme for solving Maxwell's system. Compel 19 (2000) 913-931. | Zbl
,[25] Fractal decomposition of exponential operators with applications to many-body theories and Monte-Carlo simulations. Phys. Lett. A 146 (1990) 319-323. | MR
,[26] A high order discontinuous Galerkin method with local time stepping for the Maxwell equations. Int. J. Numer. Model. 22 (2009) 77-103. | Zbl
, , and ,[27] Component splitting for semi-discrete Maxwell equations. BIT Numer. Math. 51 (2011) 427-445. | MR | Zbl
,[28] Composition methods, Maxwell's and source term. CWI Technical report (2010); Available at http://oai.cwi.nl/oai/asset/17036/17036A.pdf.
,[29] Unconditionaly stable integration of Maxwell's equations. Linear Algebra Appl. 431 (2009) 300-317. | MR | Zbl
and ,[30] Global extrapolation of a first order splitting method. SIAM J. Sci. Stat. Comput. 6 (1985) 771-780. | MR | Zbl
and ,[31] Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302-307. | Zbl
,[32] Construction of higher order symplectic integrators. Phys. Lett. A 150 (1990) 262-268. | MR
,Cité par Sources :