Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 6, pp. 1421-1445.

Since matrix compression has paved the way for discretizing the boundary integral equation formulations of electromagnetics scattering on very fine meshes, preconditioners for the resulting linear systems have become key to efficient simulations. Operator preconditioning based on Calderón identities has proved to be a powerful device for devising preconditioners. However, this is not possible for the usual first-kind boundary formulations for electromagnetic scattering at general penetrable composite obstacles. We propose a new first-kind boundary integral equation formulation following the reasoning employed in [X. Clayes and R. Hiptmair, Report 2011-45, SAM, ETH Zürich (2011)] for acoustic scattering. We call it multi-trace formulation, because its unknowns are two pairs of traces on interfaces in the interior of the scatterer. We give a comprehensive analysis culminating in a proof of coercivity, and uniqueness and existence of solution. We establish a Calderón identity for the multi-trace formulation, which forms the foundation for operator preconditioning in the case of conforming Galerkin boundary element discretization.

DOI : 10.1051/m2an/2012011
Classification : 78A45, 35A35, 35Q60, 78M15
Mots-clés : integral equations, boundary element method, domain decomposition, Maxwell's equations
@article{M2AN_2012__46_6_1421_0,
     author = {Claeys, Xavier and Hiptmair, Ralf},
     title = {Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1421--1445},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {6},
     year = {2012},
     doi = {10.1051/m2an/2012011},
     mrnumber = {2996334},
     zbl = {1277.78032},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2012011/}
}
TY  - JOUR
AU  - Claeys, Xavier
AU  - Hiptmair, Ralf
TI  - Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2012
SP  - 1421
EP  - 1445
VL  - 46
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2012011/
DO  - 10.1051/m2an/2012011
LA  - en
ID  - M2AN_2012__46_6_1421_0
ER  - 
%0 Journal Article
%A Claeys, Xavier
%A Hiptmair, Ralf
%T Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2012
%P 1421-1445
%V 46
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2012011/
%R 10.1051/m2an/2012011
%G en
%F M2AN_2012__46_6_1421_0
Claeys, Xavier; Hiptmair, Ralf. Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 6, pp. 1421-1445. doi : 10.1051/m2an/2012011. http://archive.numdam.org/articles/10.1051/m2an/2012011/

[1] F.P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen and E. Michielssen, A multiplicative Calderon preconditioner for the electric field integral equation. IEEE Trans. Antennas Propag. 56 (2008) 2398-2412. | MR

[2] H. Bagci, F.P. Andriulli, K. Coolst, F. Olyslager and E. Michielssen, A Calderón multiplicative preconditioner for the combined field integral equation. IEEE Trans. Antennas Propag. 57 (2009) 3387-3392. | MR

[3] A. Bendali, Numerical analysis of the exterior boundary value problem for time harmonic Maxwell equations by a boundary finite element method. Part 2 : The discrete problem. Math. Comput. 43 (1984) 47-68. | MR | Zbl

[4] A. Bendali, M.B. Fares and J. Gay, A boundary-element solution of the Leontovitch problem. IEEE Trans. Antennas Propag. 47 (1999) 1597-1605. | MR | Zbl

[5] Y. Boubendir, A. Bendali and M.B. Fares, Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method. Int. J. Numer. Methods Eng. 73 (2008) 1624-1650. | MR | Zbl

[6] A. Buffa, Remarks on the discretization of some noncoercive operator with applications to the heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1-18. | MR | Zbl

[7] A. Buffa and S.H. Christiansen, A dual finite element complex on the barycentric refinement. Math. Comput. 76 (2007) 1743-1769. | MR | Zbl

[8] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell's equations I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9-30. | MR | Zbl

[9] A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell's equations II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24 (2001) 31-48. | MR | Zbl

[10] A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering, in Topics in computational wave propagation. Lect. Notes Comput. Sci. Eng. 31 (2003) 83-124. | MR | Zbl

[11] A. Buffa, M. Costabel and C. Schwab, Boundary element methods for Maxwell's equations on non-smooth domains. Numer. Math. 92 (2002) 679-710. | MR | Zbl

[12] A. Buffa, M. Costabel and D. Sheen, On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845-867. | MR | Zbl

[13] A. Buffa, R. Hiptmair, T. Von Petersdorff and C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95 (2003) 459-485. | MR | Zbl

[14] Y. Chang and R. Harrington, A surface formulation or characteristic modes of material bodies. IEEE Trans. Antennas Propag. 25 (1977) 789-795.

[15] S.H. Christiansen, Discrete Fredholm properties and convergence estimates for the electric field integral equation. Math. Comput. 73 (2004) 143-167. | MR | Zbl

[16] S.H. Christiansen and J.-C. Nédélec, Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique. C. R. Acad. Sci. Paris, Sér. I Math. 330 (2000) 617-622. | Zbl

[17] S.H. Christiansen and J.-C. Nédélec, A preconditioner for the electric field integral equation based on Calderón formulas. SIAM J. Numer. Anal. 40 (2002) 1100-1135. | MR | Zbl

[18] X. Claeys, A single trace integral formulation of the second kind for acoustic scattering. Seminar of Applied Mathematics, ETH Zürich, Technical Report 2011-14. Submitted to J. Appl. Math. (2011).

[19] X. Claeys and R. Hiptmair, Boundary integral formulation of the first kind for acoustic scattering by composite structures. Report 2011-45, SAM, ETH Zürich (2011)

[20] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd edition. Appl. Math. Sci. 93 (1998). | MR | Zbl

[21] K. Coolst, F.P. Andriulli and F. Olyslager, A Calderón, preconditioned PMCHWT equation, in Proc. of the International Conference on Electromagnetics in Advanced Applications, ICEAA'09. Torino, Italy (2009) 521-524.

[22] M. Costabel, Boundary integral operators on Lipschitz domains : elementary results. SIAM J. Math. Anal. 19 (1988) 613-626. | MR | Zbl

[23] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237-339. | MR | Zbl

[24] R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering. SIAM J. Numer. Anal. 41 (2003) 919-944. | MR | Zbl

[25] R. Hiptmair, Operator preconditioning. Comput. Math. Appl. 52 (2006) 699-706. | MR | Zbl

[26] R. Hiptmair and C. Jerez-Hanckes, Multiple traces boundary integral formulation for Helmholtz transmission problems. SAM, ETH Zürich, Report 2010-35 (2010). | Zbl

[27] R. Hiptmair and C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40 (2002) 66-86. | MR | Zbl

[28] G.C. Hsiao, O. Steinbach and W.L. Wendland, Domain decomposition methods via boundary integral equations, Numerical Analysis VI, Ordinary differential equations and integral equations. J. Comput. Appl. Math. 125 (2000) 521-537. | MR | Zbl

[29] S. Jäärvenpä, S.P. Kiminki and P. Ylä-Oijala, Calderon preconditioned surface integral equations for composite objects with junctions. IEEE Trans. Antennas Propag. 59 (2011) 546-554. | MR

[30] U. Langer and O. Steinbach, Boundary element tearing and interconnecting methods. Computing 71 (2003) 205-228. | MR | Zbl

[31] W. Mclean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). | MR | Zbl

[32] E. Miller and A. Poggio, Computer Techniques for Electromagnetics, in Integral equation solution of three-dimensional scattering problems, Chapter 4, Pergamon, New York (1973) 159-263. | MR

[33] S.M. Rao, D.R. Wilton and A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30 (1986) 409-418.

[34] S.A. Sauter and C. Schwab, Boundary element methods, Springer Series in Comput. Math. 39 (2011). | MR | Zbl

[35] O. Steinbach and W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math 9 (1998) 191-216. | MR | Zbl

[36] O. Steinbach and M. Windisch, Modified combined field integral equations for electromagnetic scattering. SIAM J. Numer. Anal. 47 (2009) 1149-1167. | MR | Zbl

[37] M.B. Stephanson and J.-F. Lee, Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions. IEEE Trans. Antennas Propag. 57 (2009) 1274-1279.

[38] T. Von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 (1989) 185-213. | MR | Zbl

[39] M. Windisch, Boundary element tearing and interconnecting methods for acoustic and electromagnetic scattering. Ph.D. thesis, Graz University of Technology (2010).

[40] T.-K. Wu and L.-L. Tsai, Scattering from arbitrarily-shaped lossy di-electric bodies of revolution. Radio Sci. 12 (1977) 709-718.

[41] S. Yan, J.-M. Jin and Z.-P. Nie, A comparative study of Calderón preconditioners for PMCHWT equations. IEEE Trans. Antennas Propag. 58 (2010) 2375-2383. | MR

Cité par Sources :