We develop a Discrete Element Method (DEM) for elastodynamics using polyhedral elements. We show that for a given choice of forces and torques, we recover the equations of linear elastodynamics in small deformations. Furthermore, the torques and forces derive from a potential energy, and thus the global equation is an Hamiltonian dynamics. The use of an explicit symplectic time integration scheme allows us to recover conservation of energy, and thus stability over long time simulations. These theoretical results are illustrated by numerical simulations of test cases involving large displacements.
Mots-clés : solids, elasticity, discrete element method, hamiltonian, explicit time integration
@article{M2AN_2012__46_6_1527_0, author = {Monasse, Laurent and Mariotti, Christian}, title = {An energy-preserving {Discrete} {Element} {Method} for elastodynamics}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1527--1553}, publisher = {EDP-Sciences}, volume = {46}, number = {6}, year = {2012}, doi = {10.1051/m2an/2012015}, mrnumber = {2996339}, zbl = {1267.74114}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2012015/} }
TY - JOUR AU - Monasse, Laurent AU - Mariotti, Christian TI - An energy-preserving Discrete Element Method for elastodynamics JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 1527 EP - 1553 VL - 46 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2012015/ DO - 10.1051/m2an/2012015 LA - en ID - M2AN_2012__46_6_1527_0 ER -
%0 Journal Article %A Monasse, Laurent %A Mariotti, Christian %T An energy-preserving Discrete Element Method for elastodynamics %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 1527-1553 %V 46 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2012015/ %R 10.1051/m2an/2012015 %G en %F M2AN_2012__46_6_1527_0
Monasse, Laurent; Mariotti, Christian. An energy-preserving Discrete Element Method for elastodynamics. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 6, pp. 1527-1553. doi : 10.1051/m2an/2012015. http://archive.numdam.org/articles/10.1051/m2an/2012015/
[1] RATTLE : A “velocity” version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52 (1983) 24-34. | Zbl
,[2] Numerical simulation of fluid-structure interaction by SPH. 4th MIT Conference on Computational Fluid and Solid Mechanics. Comput. Struct. 85 (2007) 879-890.
, and ,[3] Variational and momentum preservation aspects of Smooth particle hydrodynamic formulations. Comput. Meth. Appl. Mech. Eng. 180 (1999) 97-115. | MR | Zbl
and ,[4] A discrete numerical model for granular assemblies. Geotech. 29 (1979) 47-65.
and ,[5] On the application of a discrete model to the fracture process of cohesive granular materials. Granul. Matter 4 (2002) 77-90. | Zbl
, and ,[6] A modification of Cagniard's method for solving seismic pulse problem. Appl. Sci. Res. B 8 (1960) 349-356. | Zbl
,[7] Theory of micropolar elasticity, in Fracture, edited by H. Liebowitz. Academic Press, New York 2 (1968) 621-729. | Zbl
,[8] An improved hybrid particle-element method for hypervelocity impact simulation. Symposium on Hypervelocity Impact, Galveston. Texas (2000). Int. J. Impact Eng. 26 (2001) 169-178.
and ,[9] Extension and validation of a hybrid particle-finite element method for hypervelocity impact simulation. Hypervelocity Impact Symposium. Int. J. Impact Eng. 29 (2003) 237-246.
and ,[10] Discrete thermal element modelling of heat conduction in particle systems : Basic formulations. J. Comput. Phys. 227 (2008) 5072-5089. | Zbl
, , and ,[11] Asymptotic analysis of heterogeneous Cosserat media. Int. J. Solids Struct. 38 (2001) 4585-4608. | MR | Zbl
, and ,[12] R.A. Gingold and J.J. Monaghan, smoothed particle hydrodynamics : Theory and application to nonspherical stars. Mon. Not. R. Astron. Soc. 181 (1977) 375-389. | Zbl
[13] Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Meth. Appl. Mech. Eng. 190 (2000) 1763-1783. | MR | Zbl
,[14] Preprocessed discrete Moser-Veselov algorithm for the full dynamics of a rigid body. J. Phys. A 39 (2006) 13225-13235. | MR | Zbl
and ,[15] Geometric Numerical Integration : Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition. Springer Series in Comput. Math. 31 (2006). | MR | Zbl
, and ,[16] Coupled lattice Boltzmann and discrete element modelling of fluid-particle interaction problems, in 4th MIT Conference on Computational Fluid and Solid Mechanics. Comput. Struct. 85 (2007) 1080-1088.
, and ,[17] Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Meth. Appl. Mech. Eng. 195 (2006) 4890-4916. | MR | Zbl
and ,[18] Conservative smoothing stabilizes discrete-numerical instabilities in SPH material dynamics computations. Appl. Math. Comput. 85 (1997) 209-226. | MR | Zbl
, and ,[19] Smooth Particle Applied Mechanics : The State of the Art (World Scientific). Adv. Ser. Nonlinear Dyn. 25 (2006). | MR | Zbl
,[20] Two-dimensional studies of crystal stability and fluid viscosity. J. Chem. Phys. 60 (1974) 4043-4047.
, and ,[21] Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material. Comput. Struct. 81 (2003) 1255-1265.
and ,[22] Discrete Hamilton's equations for arbitrary Lagrangian-Eulerian dynamics of viscous compressible flow. Comput. Meth. Appl. Mech. Eng. 189 (2000) 875-900. | Zbl
and ,[23] Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123 (1996) 421-434.
and ,[24] Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Meth. Fluids 26 (1998) 751-769. | Zbl
, and ,[25] A particle method for three-dimensional elastic analysis, in Proc. of 6th World Cong. Computational Mechanics (WCCM VI). Beijing (2004).
, and ,[26] A study of fragmentation processes using a discrete element method. Comput. Meth. Appl. Mech. Eng. 138 (1996) 3-18. | Zbl
and ,[27] On the propagation of tremors over the surface of an elastic solid. Philos. Trans. R. Soc. Lond. A 203 (1904) 1-42. | JFM
,[28] A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics. Comput. Meth. Appl. Mech. Eng. 190 (2001) 6309-6322. | MR | Zbl
and ,[29] Fluid-shell structure interaction analysis by coupled particle and finite element method, in 4th MIT Conference on Computational Fluid and Solid Mechanics. Comput. Struct. 85 (2007) 688-697.
, and ,[30] Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112 (1994) 117-125. | MR | Zbl
and ,[31] Variational time integrators. Int. J. Numer. Meth. Eng. 60 (2004) 153-212. | MR | Zbl
, , and ,[32] High strain Lagrangian hydrodynamics : A three-dimensional SPH code for dynamic material response. J. Comput. Phys. 109 (1993) 76-83. | Zbl
, , , and ,[33] A numerical approach to the testing of the fission hypothesis. Astron. J. 82 (1977) 1013-1024.
,[34] Lamb's problem with the lattice model Mka3D. Geophys. J. Int. 171 (2007) 857-864.
,[35] Simulating free surface flows with SPH. J. Comput. Phys. 110 (1994) 399-406. | Zbl
,[36] A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41 (2004) 1329-1364.
and ,[37] Shear zones in granular media : Three-dimensional contact dynamics simulation. Phys. Rev. E 76 (2007) 051301.
, and ,[38] Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Meth. Appl. Mech. Eng. 100 (1992) 63-116. | MR | Zbl
, and ,[39] A Hamiltonian particle method for non-linear elastodynamics. Int. J. Numer. Meth. Eng. 74 (2008) 1344-1373. | MR | Zbl
and ,[40] J.W. Swegle, D.L. Hicks and S.W. Attaway, smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116 (1995) 123-134. | MR | Zbl
[41] Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40 (2004) 1551-1569.
, and ,[42] A new class of particle methods. Numer. Math. 76 (1997) 87-109. | MR | Zbl
,Cité par Sources :