For the efficient numerical solution of indefinite linear systems arising from curl conforming edge element approximations of the time-harmonic Maxwell equation, we consider local multigrid methods (LMM) on adaptively refined meshes. The edge element discretization is done by the lowest order edge elements of Nédélec's first family. The LMM features local hybrid Hiptmair smoothers of Jacobi and Gauss-Seidel type which are performed only on basis functions associated with newly created edges/nodal points or those edges/nodal points where the support of the corresponding basis function has changed during the refinement process. The adaptive mesh refinement is based on Dörfler marking for residual-type a posteriori error estimators and the newest vertex bisection strategy. Using the abstract Schwarz theory of multilevel iterative schemes, quasi-optimal convergence of the LMM is shown, i.e., the convergence rates are independent of mesh sizes and mesh levels provided the coarsest mesh is chosen sufficiently fine. The theoretical findings are illustrated by the results of some numerical examples.
Mots-clés : Maxwell equations, nédélec edge elements, indefinite, multigrid methods, local hiptmair smoothers, adaptive edge finite element methods, optimality
@article{M2AN_2013__47_1_125_0, author = {Chen, Huangxin and Hoppe, Ronald H. W. and Xu, Xuejun}, title = {Uniform convergence of local multigrid methods for the time-harmonic {Maxwell} equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {125--147}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, doi = {10.1051/m2an/2012023}, mrnumber = {2968698}, zbl = {1278.65167}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2012023/} }
TY - JOUR AU - Chen, Huangxin AU - Hoppe, Ronald H. W. AU - Xu, Xuejun TI - Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 125 EP - 147 VL - 47 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2012023/ DO - 10.1051/m2an/2012023 LA - en ID - M2AN_2013__47_1_125_0 ER -
%0 Journal Article %A Chen, Huangxin %A Hoppe, Ronald H. W. %A Xu, Xuejun %T Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 125-147 %V 47 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2012023/ %R 10.1051/m2an/2012023 %G en %F M2AN_2013__47_1_125_0
Chen, Huangxin; Hoppe, Ronald H. W.; Xu, Xuejun. Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 125-147. doi : 10.1051/m2an/2012023. http://archive.numdam.org/articles/10.1051/m2an/2012023/
[1] Optimality of multilevel preconditioners for local mesh refinement in three dimensions. SIAM J. Numer. Anal. 44 (2006) 1005-1025. | MR | Zbl
and ,[2] An odyssey into local refinement and multilevel preconditioning III : implementation and numerical experiments. SIAM J. Sci. Comput. 25 (2003) 478-498. | MR | Zbl
, and ,[3] Multigrid in H(div) and H(curl). Numer. Math. 85 (2000) 197-218. | MR | Zbl
, and ,[4] Local mesh refinement multilevel techniques. SIAM J. Sci. Stat. Comput. 8 (1987) 109-134. | MR | Zbl
and ,[5] Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Eng. 3 (1991) 181-191. | MR | Zbl
,[6] Adaptive multilevel methods for edge element discretizations of Maxwell's equations. Surv. Math. Indust. 8 (1999) 271-312. | MR | Zbl
, , , and ,[7] Residual based a posteriori error estimators for eddy current computation. ESAIM : M2AN 34 (2000) 159-182. | Numdam | MR | Zbl
, , and ,[8] Computational Electromagnetism : Variational Formulations, Complementarity, Edge Elements. Academic Press, San Diego (1998). | MR | Zbl
,[9] Multigrid Methods. Pitman (1993). | MR | Zbl
,[10] Convergence estimates for product iterative methods with applications to domain decomposition. Math. Comp. 57 (1991) 23-45. | MR | Zbl
, , and ,[11] Uniform convergence of multigrid V-cycle iterations for indefinite and nonsymmetric problems. SIAM J. Numer. Anal. 31 (1994) 1746-1763. | MR | Zbl
, and ,[12] Convergence analysis of an adaptive edge finite element method for the 2d eddy current equations. J. Numer. Math. 13 (2005) 19-32. | MR | Zbl
and ,[13] Local multilevel methods for adaptive finite element methods for nonsymmetric and indefinite elliptic boundary value problems. SIAM J. Numer. Anal. 47 (2010) 4492-4516. | MR | Zbl
and ,[14] An adaptive multilevel method for time-harmonic Maxwell equations with singularities. SIAM J. Sci. Comput. 29 (2007) 118-138. | MR | Zbl
, and ,[15] Convergence analysis of an adaptive edge element method for Maxwell's equations. Appl. Numer. Math. 59 (2009) 2950-2969. | MR | Zbl
, and ,[16] Multilevel preconditioning. Numer. Math. 63 (1992) 315-344. | MR | Zbl
and ,[17] A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. | MR | Zbl
,[18] Overlapping Schwarz preconditioners for indefinite time harmonic Maxwell equations. Math. Comp. 72 (2003) 1-15. | MR | Zbl
and ,[19] Analysis of a multigrid algorithm for time harmonic Maxwell equations. SIAM J. Numer. Anal. 42 (2004) 90-108. | MR | Zbl
, and ,[20] Multigrid method for Maxwell's equations. SIAM J. Numer. Anal. 36 (1998) 204-225. | MR | Zbl
,[21] Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237-339. | MR | Zbl
,[22] Nodal auxiliary spaces preconditions in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45 (2007) 2483-2509. | MR | Zbl
and ,[23] Local multigrid in H(curl,Ω). J. Comput. Math. 27 (2009) 573-603. | MR | Zbl
and ,[24] On uniform convergence theory of local multigrid methods in H1(Ω) and H(curl,Ω). Preprint (2010).
, and ,[25] Convergence of adaptive edge element methods for the 3D eddy currents equations. J. Comput. Math. 27 (2009) 657-676. | MR | Zbl
and ,[26] Local Multigrid on Adaptively Refined Meshes and Multilevel Preconditioning with Applications to Problems in Electromagnetism and Acoustics, in Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equations, edited by O. Axelsson and J. Karatson. Bentham, Bussum, The Netherlands (2010) 125-145.
, and ,[27] Exterior boundary-value problems in mathematical physics, in Trends in Applications of Pure Mathematics to Mechanics, edited by H. Zorski. Monographs Stud. Math. 5 (1979) 187-203. | MR | Zbl
,[28] A posteriori error indicators for Maxwell's equations. Comput. Appl. Math. 100 (1998) 173-190. | MR | Zbl
,[29] Finite element methods for Maxwell equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003). | MR | Zbl
,[30] Mixed finite element in lR3. Numer. Math. 35 (1980) 315-341. | Zbl
,[31] A new family of mixed finite elements in lR3. Numer. Math. 50 (1986) 57-81. | MR | Zbl
,[32] Multilevel Finite Element Approximation : Theory and Applications. Teubner, Stuttgart (1994). | MR | Zbl
,[33] Fully adaptive multigrid methods. SIAM J. Numer. Anal. 30 (1993) 230-248. | MR | Zbl
,[34] Adaptive local multigrid methods for solving time-harmonic eddy current problems. IEEE Trans. Magn. 42 (2006) 309-318.
, and ,[35] Introduction to Sobolev Spaces and Interpolation Theory. Springer, Berlin, Heidelberg, New York (2007). | MR
,[36] Geometric Integration Theory. Princeton University Press, Princeton (1957). | MR | Zbl
,[37] Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China 39 (2006) 1405-1429. | MR | Zbl
and ,[38] Optimal multilevel methods for H(grad), H(curl), and H(div) systems on graded and unstructured grids, in Multiscale, Nonlinear and Adaptive Approximation. Springer (2009) 599-659. | MR | Zbl
, and ,[39] Optimality of local multilevel methods on adaptively refined meshes for elliptic boundary value problems. J. Numer. Math. 18 (2010) 59-90. | MR | Zbl
, and ,[40] Optimality of local multilevel methods for adaptive nonconforming P1 finite element methods. J. Comput. Math. (2012), in press. | Zbl
, and ,[41] Convergence of adaptive edge finite element methods for H(curl)-elliptic problems. Numer. Lin. Algebra Appl. 17 (2009) 415-432. | MR | Zbl
, and ,[42] Quasi-optimal convergence of adaptive edge finite element methods for three dimensional indefinite time-harmonic Maxwell's equations. Math. Comp. 81 (2012), 623-642. | MR | Zbl
, , , and ,Cité par Sources :