We prove error estimates for the ultra weak variational formulation (UWVF) in 3D linear elasticity. We show that the UWVF of Navier's equation can be derived as an upwind discontinuous Galerkin method. Using this observation, error estimates are investigated applying techniques from the theory of discontinuous Galerkin methods. In particular, we derive a basic error estimate for the UWVF in a discontinuous Galerkin type norm and then an error estimate in the L2(Ω) norm in terms of the best approximation error. Our final result is an L2(Ω) norm error estimate using approximation properties of plane waves to give an estimate for the order of convergence. Numerical examples are presented.
Mots-clés : ultra weak variational formulation, error estimates, plane wave basis, linear elasticity, upwind discontinuous Galerkin method
@article{M2AN_2013__47_1_183_0, author = {Luostari, Teemu and Huttunen, Tomi and Monk, Peter}, title = {Error estimates for the ultra weak variational formulation in linear elasticity}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {183--211}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, doi = {10.1051/m2an/2012025}, mrnumber = {2979514}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2012025/} }
TY - JOUR AU - Luostari, Teemu AU - Huttunen, Tomi AU - Monk, Peter TI - Error estimates for the ultra weak variational formulation in linear elasticity JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 183 EP - 211 VL - 47 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2012025/ DO - 10.1051/m2an/2012025 LA - en ID - M2AN_2013__47_1_183_0 ER -
%0 Journal Article %A Luostari, Teemu %A Huttunen, Tomi %A Monk, Peter %T Error estimates for the ultra weak variational formulation in linear elasticity %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 183-211 %V 47 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2012025/ %R 10.1051/m2an/2012025 %G en %F M2AN_2013__47_1_183_0
Luostari, Teemu; Huttunen, Tomi; Monk, Peter. Error estimates for the ultra weak variational formulation in linear elasticity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 183-211. doi : 10.1051/m2an/2012025. http://archive.numdam.org/articles/10.1051/m2an/2012025/
[1] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR | Zbl
, , and ,[2] An exponentially convergent nonpolynomial finite element method for time-harmonic scattering from polygons. SIAM J. Sci. Comput. 32 (2010) 1417-1441. | MR | Zbl
and ,[3] The mathematical theory of finite element methods, 3rd edition. Springer (2008). | MR | Zbl
and ,[4] Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM : M2AN 42 (2008) 925-940. | Numdam | MR | Zbl
and ,[5] Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Problèmes de Helmholtz 2D et de Maxwell 3D. Ph.D. thesis, Université Paris IX Dauphine (1996).
,[6] Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255-299. | MR | Zbl
and ,[7] Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Mod. Methods Appl. Sci. 16 (2006) 139-160. | MR | Zbl
and ,[8] Numerical modeling of elastic wave scattering in frequency domain by partition of unity finite element method. Int. J. Numer. Methods Eng. 77 (2009) 1646-1669. | MR | Zbl
and ,[9] A discontinuous enrichment method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6455-6479. | MR | Zbl
, and ,[10] A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 1389-1429. | MR | Zbl
, and ,[11] Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comput. Phys. 225 (2007) 1961-1984. | MR | Zbl
,[12] Spherical coverings. Available on http://www.research.att.com/˜njas/coverings/index.html (1994).
, and ,[13] Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation : analysis of the p-version. SIAM J. Numer. Anal. 49 (2011) 264-284. | MR | Zbl
, and ,[14] Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations. Math. Comput. In press. | Zbl
, and ,[15] Computational aspects of the ultra-weak variational formulation. J. Comput. Phys. 182 (2002) 27-46. | MR | Zbl
, and ,[16] The ultra weak variational formulation for elastic wave problems. SIAM J. Sci. Comput. 25 (2004) 1717-1742. | MR | Zbl
, , and ,[17] The perfectly matched layer for the ultra weak variational formulation of the 3D Helmholtz equation. Int. J. Numer. Methods Eng. 61 (2004) 1072-1092. | MR | Zbl
, and ,[18] Solving Maxwell's equations using the ultra weak variational formulation. J. Comput. Phys. 223 (2007) 731-758. | MR | Zbl
, and ,[19] An ultra-weak method for acoustic fluid-solid interaction. J. Comput. Appl. Math. 213 (2008) 1667-1685. | MR | Zbl
, and ,[20] Potential methods in the theory of elasticity. Israel Program for Scientific Translations (1965). | MR | Zbl
,[21] The ultra weak variational formulation for 3D elastic wave problems, in Proc. 20th International Congress on Acoustics, ICA (2010).Available in 2010 on http://www.acoustics.asn.au. | Zbl
, and ,[22] A discontinuous enrichment method for three-dimensional multiscale harmonic wave propagation problems in multi-fluid and fluid-solid media. Int. J. Numer. Methods Eng. 76 (2008) 400-425. | MR | Zbl
, and ,[23] The partition of unity finite element method : basic theory and applications. Comput. Methods Appl. Mech. Eng. 139 (1996) 289-314. | MR | Zbl
and ,[24] Trefftz-Discontinuous Galerkin Methods for Time-Harmonic Wave Problems. Ph.D. thesis, ETH Zürich (2011).
,[25] Plane wave approximation in linear elasticity. To appear in Appl. Anal. | MR
,[26] Plane wave approximation of homogeneous Helmholtz solutions. Z. Angew. Math. Phys. 65 (2011) 809-837. | MR | Zbl
, and ,[27] A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121-136. | MR | Zbl
and ,[28] Betti's identity and transition matrix for elastic waves. J. Acoust. Soc. Am. 64 (1978) 302-310. | MR | Zbl
,[29] Plane wave decomposition in the unit disc : convergence estimates and computational aspects. J. Comput. Appl. Math. 193 (2006) 140-156. | MR | Zbl
,[30] Extremal systems of points and numerical integration on the sphere. Adv. Comput. Math. 21 (2004) 107-125. | MR | Zbl
and ,[31] Overview of the discontinuous enrichment method, the ultra-weak variational formulation, and the partition of unity method for acoustic scattering in the medium frequency regime and performance comparisons. Int. J. Numer. Methods Eng. 89 (2012) 403-417. | MR | Zbl
, , and ,[32] Interpolation and cubature on the sphere. Available on http://web.maths.unsw.edu.au/˜rsw/Sphere.
and ,Cité par Sources :