We discuss a numerical formulation for the cell problem related to a homogenization approach for the study of wetting on micro rough surfaces. Regularity properties of the solution are described in details and it is shown that the problem is a convex one. Stability of the solution with respect to small changes of the cell bottom surface allows for an estimate of the numerical error, at least in two dimensions. Several benchmark experiments are presented and the reliability of the numerical solution is assessed, whenever possible, by comparison with analytical one. Realistic three dimensional simulations confirm several interesting features of the solution, improving the classical models of study of wetting on roughness.
Mots-clés : wetting, super-hydrophobic surfaces, contact-angle hysteresis, homogenization, total variation, non-smooth optimization, augmented lagrangian
@article{M2AN_2013__47_3_837_0, author = {Cacace, S. and Chambolle, A. and DeSimone, A. and Fedeli, L.}, title = {Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {837--858}, publisher = {EDP-Sciences}, volume = {47}, number = {3}, year = {2013}, doi = {10.1051/m2an/2012048}, mrnumber = {3056411}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2012048/} }
TY - JOUR AU - Cacace, S. AU - Chambolle, A. AU - DeSimone, A. AU - Fedeli, L. TI - Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 837 EP - 858 VL - 47 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2012048/ DO - 10.1051/m2an/2012048 LA - en ID - M2AN_2013__47_3_837_0 ER -
%0 Journal Article %A Cacace, S. %A Chambolle, A. %A DeSimone, A. %A Fedeli, L. %T Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 837-858 %V 47 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2012048/ %R 10.1051/m2an/2012048 %G en %F M2AN_2013__47_3_837_0
Cacace, S.; Chambolle, A.; DeSimone, A.; Fedeli, L. Macroscopic contact angle and liquid drops on rough solid surfaces via homogenization and numerical simulations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 3, pp. 837-858. doi : 10.1051/m2an/2012048. http://archive.numdam.org/articles/10.1051/m2an/2012048/
[1] Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. A 461 (2005) 79-97. | MR | Zbl
and ,[2] Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Rat. Mech. Anal. 202 (2011) 295-348. | MR | Zbl
and ,[3] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (2000) | MR | Zbl
, and ,[4] The obstacle problem revisited. J. Fourier Anal. Appl. 4 (1998) 383-402. | MR | Zbl
,[5] Capillary drops on an inhomogeneous surface, Perspectives in nonlinear partial differential equations. Contemp. Math. 446 (2007) 175-201. | MR | Zbl
and ,[6] A new model for contact angle hysteresis. Netw. Heterog. Media 2 (2007) 211-225. | MR | Zbl
, and ,[7] On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55 (1992) | MR | Zbl
and ,[8] Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman (2009)
,[9] Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). | MR | Zbl
and ,[10] Metastable equilibria of capillary drops on solid surfaces: a phase field approach. Contin. Mech. Thermodyn. 23 (2011) 453-471. | MR | Zbl
, and ,[11] Geometric measure theory. Springer-Verlag New York Inc., New York (1969). | MR | Zbl
,[12] Some properties of capillary surfaces. Milan J. Math. 70 (2002) 1-23. | MR | Zbl
,[13] The convergence of a central-difference discretization of Rudin-Osher-Fatemi model for image denoising, Scale Space and Variational Methods in Computer Vision. Springer (2009) 514-526.
, and ,[14] Splitting Algorithms for the Sum of Two Nonlinear Operators. SIAM J. Numer. Anal. 16 (1979) 964-979. | MR | Zbl
and ,[15] Wetting and Roughness. Annu. Rev. Mater. Res. 38 (2008) 71-99.
,[16] Boundary regularity for solutions to various capillarity and free boundary problems. Commun. Partial Differ. Equ. 2 (1977) 323-357. | MR | Zbl
,[17] Micron-Sized Main-Chain Liquid Crystalline Elastomer Actuators with Ultralarge Amplitude Contractions. J. Amer. Chem. Soc. 131 (2009) 15000-15004.
, , , , , and ,[18] Error Bounds for Finite-Difference Methods for Rudin-Osher-Fatemi Image Smoothing. SIAM J. Numer. Anal. 49 (2011) 845-868. | MR
and ,Cité par Sources :