We consider optimal control problems for the bidomain equations of cardiac electrophysiology together with two-variable ionic models, e.g. the Rogers-McCulloch model. After ensuring the existence of global minimizers, we provide a rigorous proof for the system of first-order necessary optimality conditions. The proof is based on a stability estimate for the primal equations and an existence theorem for weak solutions of the adjoint system.
Mots-clés : PDE constrained optimization, bidomain equations, two-variable ionic models, weak local minimizer, existence theorem, necessary optimality conditions, pointwise minimum condition
@article{M2AN_2013__47_4_1077_0, author = {Kunisch, Karl and Wagner, Marcus}, title = {Optimal control of the bidomain system {(III):} {Existence} of minimizers and first-order optimality conditions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1077--1106}, publisher = {EDP-Sciences}, volume = {47}, number = {4}, year = {2013}, doi = {10.1051/m2an/2012058}, mrnumber = {3082290}, zbl = {1275.49005}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2012058/} }
TY - JOUR AU - Kunisch, Karl AU - Wagner, Marcus TI - Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 1077 EP - 1106 VL - 47 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2012058/ DO - 10.1051/m2an/2012058 LA - en ID - M2AN_2013__47_4_1077_0 ER -
%0 Journal Article %A Kunisch, Karl %A Wagner, Marcus %T Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 1077-1106 %V 47 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2012058/ %R 10.1051/m2an/2012058 %G en %F M2AN_2013__47_4_1077_0
Kunisch, Karl; Wagner, Marcus. Optimal control of the bidomain system (III): Existence of minimizers and first-order optimality conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Direct and inverse modeling of the cardiovascular and respiratory systems. Numéro spécial, Tome 47 (2013) no. 4, pp. 1077-1106. doi : 10.1051/m2an/2012058. http://archive.numdam.org/articles/10.1051/m2an/2012058/
[1] Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology. J. Math. Anal. Appl. 388 (2012) 231-247. | MR | Zbl
, and ,[2] A simple two-variable model of cardiac excitation. Chaos, Solitons and Fractals 7 (1996) 293-301.
and ,[3] Nonlinearity and Functional Analysis. Academic Press, New York, San Francisco, London (1977). | MR | Zbl
,[4] Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Analysis: Real World Appl. 10 (2009) 458-482. | MR | Zbl
, and ,[5] Theoretical analysis and control results for the FitzHugh-Nagumo equation. Electron. J. Differ. Eq. (2008) 1-20. | Zbl
, , and ,[6] Direct Methods in the Calculus of Variations. Springer, New York (2008). | MR | Zbl
,[7] Partial Differential Equations. Amer. Math. Soc. Providence (1998). | MR
,[8] Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445-466.
,[9] Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008). | MR | Zbl
and ,[10] A parallel Newton-Krylov method for optimal control of the monodomain model in cardiac electrophysiology. Comput. Visualiz. Sci. 14 (2011) [2012], 257-269. | MR
, and ,[11] Optimal control of the bidomain system (I): The monodomain approximation with the Rogers-McCulloch model. Nonlinear Anal.: Real World Appl. 13 (2012) 1525-1550. | MR | Zbl
and ,[12] Optimal control of the bidomain system (II): Uniqueness and regularity theorems. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011-008 (to appear: Ann. Mat. Pura Appl.) | Zbl
and ,[13] Control theory inspired considerations for the mathematical model defibrillation, in Proc. of the 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference 7416-7421.
and ,[14] Higher order optimization and adaptive numerical solution for optimal control of monodomain equations in cardiac electrophysiology. Appl. Num. Math. 61 (2011) 53-65. | MR | Zbl
and ,[15] Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology. Comput. Optim. Appl. 49 (2011) 149-178. | MR | Zbl
, and ,[16] Optimal control approach to termination of re-entry waves in cardiac electrophysiology. University of Graz, Institute for Mathematics and Scientific Computing, SFB-Report No. 2011-020 (to appear: J. Math. Biol., doi: 10.1007/s00285-012-0557-2) | MR
, and ,[17] An active pulse transmission line simulating nerve axon. Proc. Institute of Radio Engineers 50 (1962) 2061-2070.
, and ,[18] A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Engrg. 41 (1994) 743-757.
and ,[19] Funktionalanalysis und Steuerungstheorie. Springer, Berlin, Heidelberg, New York (1976). | MR | Zbl
,[20] Computing the Electrical Activity in the Heart. Springer, Berlin (2006). | MR | Zbl
, , , , and ,[21] A Bi-Domain Model for Describing Ischemic Myocardial D-C Potentials. Ph.D. thesis. Massachusetts Institute of Technology (1978).
,[22] Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Analysis: Real World Appl. 10 (2009) 849-868. | MR | Zbl
,[23] Optimal Control of Differential and Functional Equations. Academic Press, New York, London (1972). | MR | Zbl
,[24] Functional Analysis. Springer, Berlin (1995) (reprint of the 6th edn. from 1980). | MR
,Cité par Sources :