We discuss new MUSCL reconstructions to approximate the solutions of hyperbolic systems of conservations laws on 2D unstructured meshes. To address such an issue, we write two MUSCL schemes on two overlapping meshes. A gradient reconstruction procedure is next defined by involving both approximations coming from each MUSCL scheme. This process increases the number of numerical unknowns, but it allows to reconstruct very accurate gradients. Moreover a particular attention is paid on the limitation procedure to enforce the required robustness property. Indeed, the invariant region is usually preserved at the expense of a more restrictive CFL condition. Here, we try to optimize this condition in order to reduce the computational cost.
Mots-clés : systems of conservation laws, muscl method, unstructured meshes, dual mesh, invariant region
@article{M2AN_2014__48_2_583_0, author = {Berthon, Christophe and Coudi\`ere, Yves and Desveaux, Vivien}, title = {Second-order {MUSCL} schemes based on {Dual} {Mesh} {Gradient} {Reconstruction} {(DMGR)}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {583--602}, publisher = {EDP-Sciences}, volume = {48}, number = {2}, year = {2014}, doi = {10.1051/m2an/2013105}, mrnumber = {3177858}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2013105/} }
TY - JOUR AU - Berthon, Christophe AU - Coudière, Yves AU - Desveaux, Vivien TI - Second-order MUSCL schemes based on Dual Mesh Gradient Reconstruction (DMGR) JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 583 EP - 602 VL - 48 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2013105/ DO - 10.1051/m2an/2013105 LA - en ID - M2AN_2014__48_2_583_0 ER -
%0 Journal Article %A Berthon, Christophe %A Coudière, Yves %A Desveaux, Vivien %T Second-order MUSCL schemes based on Dual Mesh Gradient Reconstruction (DMGR) %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 583-602 %V 48 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2013105/ %R 10.1051/m2an/2013105 %G en %F M2AN_2014__48_2_583_0
Berthon, Christophe; Coudière, Yves; Desveaux, Vivien. Second-order MUSCL schemes based on Dual Mesh Gradient Reconstruction (DMGR). ESAIM: Mathematical Modelling and Numerical Analysis , Multiscale problems and techniques. Special Issue, Tome 48 (2014) no. 2, pp. 583-602. doi : 10.1051/m2an/2013105. http://archive.numdam.org/articles/10.1051/m2an/2013105/
[1] Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ. 7 (2010) 1-67. | MR | Zbl
, and ,[2] Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23 (2007) 145-195. | MR | Zbl
, and ,[3] The design and application of upwind schemes on unstructured meshes, in AIAA, Aerospace Sciences Meeting, 27 th, Reno, NV (1989).
and ,[4] Analysis of slope limiters on irregular grids, in 43rd AIAA Aerospace Sciences Meeting, volume NAS Technical Report NAS-05-007 (2005).
, and ,[5] Stability of the MUSCL schemes for the Euler equations. Commun. Math. Sci. 3 (2005) 133-158. | MR | Zbl
,[6] Numerical approximations of the 10-moment Gaussian closure. Math. Comput. 75 (2006) 1809-1832. | MR | Zbl
,[7] Robustness of MUSCL schemes for 2D unstructured meshes. J. Comput. Phys. 218 (2006) 495-509. | MR | Zbl
,[8] Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004). | MR | Zbl
,[9] A MUSCL method satisfying all the numerical entropy inequalities. Math. Comput. 65 (1996) 1439-1462. | MR | Zbl
, and ,[10] Monoslope and multislope MUSCL methods for unstructured meshes. J. Comput. Phys. 229 (2010) 3745-3776. | MR | Zbl
and ,[11] L∞-stability of vertex-based MUSCL finite volume schemes on unstructured grids: Simulation of incompressible flows with high density ratios. J. Comput. Phys. 229 (2010) 6027-6046. | MR
, , and ,[12] Positivity-preserving schemes for Euler equations: sharp and practical CFL conditions (2012). preprint. | MR | Zbl
, , and ,[13] L∞ stability of the MUSCL methods. Numerische Mathematik 116 (2010) 31-64. | MR | Zbl
and ,[14] A high-order finite volume method for hyperbolic systems: Multi-dimensional Optimal Order Detection (MOOD). J. Comput. Phys. (2011). | MR | Zbl
, and ,[15] Relaxation of Energy and Approximate Riemann Solvers for General Pressure Laws in Fluid Dynamics. SIAM J. Numer. Anal. 35 (1998) 2223-2249. | MR | Zbl
and ,[16] A 3d discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput. 33 (2011) 1739-1764. | MR | Zbl
and ,[17] A 2D/3D discrete duality finite volume scheme. Application to ECG simulation. Int. J. Finite 6 (2009) 24. | MR
, , and ,[18] Positivity statements for a mixed-element-volume scheme on fixed and moving grids. European J. Comput. Mechanics/Revue Européenne de Mécanique Numérique 15 (2006) 767-798. | Zbl
, and ,[19] Tvd schemes for unstructured grids. International Journal of Heat and Mass Transfer 46 (2003) 599-611. | Zbl
and ,[20] Improved Detection Criteria for the Multi-dimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials. Comput. Fluids 64 (2012) 43-63. | MR
, , ,[21] A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. Math. Model. Numer. Anal. 39 (2005) 1203-1249. | Numdam | MR | Zbl
and ,[22] An improvement of classical slope limiters for high-order discontinuous Galerkin method. Internat. J. Numer. Methods Fluids 59 (2009) 423-442. | MR | Zbl
, , , and ,[23] Numerical approximation of hyperbolic systems of conservation laws, in vol. 118 of Appl. Math. Sci. Springer-Verlag, New York (1996). | MR | Zbl
and ,[24] On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review (1983) 35-61. | MR | Zbl
, and ,[25] A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160 (2000) 481-499. | MR | Zbl
,[26] Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 2497-2526. | MR | Zbl
,[27] Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids. J. Comput. Phys. 155 (1999) 54-74. | MR | Zbl
,[28] A second order kinetic scheme for gas dynamics on arbitrary grids. J. Comput. Phys. 205 (2005) 108-130. | MR | Zbl
and ,[29] Simple and parameter-free second slope limiter for unstructured grid aerodynamic simulations. AIAA J. 50 (2012) 1415-1426.
and ,[30] Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equ. 18 (2002) 584-608. | MR | Zbl
and ,[31] Shock waves and entropy, in Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971). Academic Press, New York (1971) 603-634. | MR | Zbl
,[32] Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Conference Board of the Math. Sci. Regional Conference Series Appl. Math. No. 11. Society for Industrial and Applied Mathematics, Philadelphia, Pa. (1973). | MR | Zbl
,[33] Finite volume methods for hyperbolic problems. Cambridge Univ Press (2002). | MR | Zbl
,[34] The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids. J. Comput. Phys. 230 (2011) 7775-7795. | MR | Zbl
, , and ,[35] Numerical resolution of well-balanced shallow water equations with complex source terms. Advances in Water Resources 32 (2009) 873-884.
and ,[36] A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws. SIAM J. Numer. Anal. (1993) 701-716. | MR | Zbl
,[37] Limiters for unstructured higher-order accurate solutions of the euler equations, in Proc. of the AIAA Forty-sixth Aerospace Sciences Meeting (2008).
and ,[38] Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions. SIAM J. Numer. Anal. (1992) 1-19. | MR | Zbl
,[39] A variant of Van Leer's method for multidimensional systems of conservation laws. J. Computat. Phys. 112 (1994) 370-381. | MR | Zbl
and ,[40] On positivity preserving finite volume schemes for Euler equations. Numerische Mathematik 73 (1996) 119-130. | MR | Zbl
and ,[41] Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186 (2003) 690-696. | MR | Zbl
, and ,[42] Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced numerical approximation nonlinear Hyperbolic equations (1998) 325-432. | MR | Zbl
,[43] Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Verlag (2009). | MR | Zbl
,[44] Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101-136. | MR | Zbl
,[45] Convergence to steady state solutions of the euler equations on unstructured grids with limiters. J. Comput. Phys. 118 (1995) 120-130. | Zbl
,[46] The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1984) 115-173. | MR | Zbl
and ,Cité par Sources :