This work is concerned with the asymptotic analysis of a time-splitting scheme for the Schrödinger equation with a random potential having weak amplitude, fast oscillations in time and space, and long-range correlations. Such a problem arises for instance in the simulation of waves propagating in random media in the paraxial approximation. The high-frequency limit of the Schrödinger equation leads to different regimes depending on the distance of propagation, the oscillation pattern of the initial condition, and the statistical properties of the random medium. We show that the splitting scheme captures these regimes in a statistical sense for a time stepsize independent of the frequency.
Mots-clés : random Schrödinger equation, long-range correlations, high frequency asymptotics, splitting scheme
@article{M2AN_2014__48_2_411_0, author = {Gomez, Christophe and Pinaud, Olivier}, title = {Asymptotics of a {Time-Splitting} {Scheme} for the {Random} {Schr\"odinger} {Equation} with {Long-Range} {Correlations}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {411--431}, publisher = {EDP-Sciences}, volume = {48}, number = {2}, year = {2014}, doi = {10.1051/m2an/2013113}, mrnumber = {3177851}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2013113/} }
TY - JOUR AU - Gomez, Christophe AU - Pinaud, Olivier TI - Asymptotics of a Time-Splitting Scheme for the Random Schrödinger Equation with Long-Range Correlations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 411 EP - 431 VL - 48 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2013113/ DO - 10.1051/m2an/2013113 LA - en ID - M2AN_2014__48_2_411_0 ER -
%0 Journal Article %A Gomez, Christophe %A Pinaud, Olivier %T Asymptotics of a Time-Splitting Scheme for the Random Schrödinger Equation with Long-Range Correlations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 411-431 %V 48 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2013113/ %R 10.1051/m2an/2013113 %G en %F M2AN_2014__48_2_411_0
Gomez, Christophe; Pinaud, Olivier. Asymptotics of a Time-Splitting Scheme for the Random Schrödinger Equation with Long-Range Correlations. ESAIM: Mathematical Modelling and Numerical Analysis , Multiscale problems and techniques. Special Issue, Tome 48 (2014) no. 2, pp. 411-431. doi : 10.1051/m2an/2013113. http://archive.numdam.org/articles/10.1051/m2an/2013113/
[1] Kinetic limits for waves in a random medium. Kinet. Relat. Models 3 (2010) 529-644. | MR | Zbl
, and ,[2] Asymptotics of the phase of the solutions of the random schrödinger equation. ARMA (2011) 13-64. | Zbl
, and ,[3] Time splitting for wave equations in random media. ESAIM: M2AN 38 (2004) 961-988. | Numdam | MR | Zbl
and ,[4] On Time-Splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175 (2002) 487-524. | MR | Zbl
, and ,[5] Convergence of Probability Measures. John Wiley and Sons, New York (1999). | MR | Zbl
,[6] The broad-band fractal nature of heterogeneity in the upper crust from petrophysical logs. Geophys. J. Int. 132 (1998) 489-507.
, and ,[7] Wave propagation and time reversal in randomly layered media, in vol. 56 of Stoch. Model. Appl. Probab. Springer, New York (2007). | MR
, , and ,[8] Radiative transport limit for the random Schrödinger equation with long-range correlations. J. Math. Pures. Appl. 98 (2012) 295-327. | MR | Zbl
,[9] Wave decoherence for the random Schrödinger equation with long-range correlations. To appear in CMP (2012). | MR | Zbl
,[10] Suppression of reflection from the grid boundary in solving the time-dependent Schroedinger equation by split-step technique with fast Fourier transform, ArXiv Physics e-prints (2006).
and ,[11] Mathematical and computational methods for semiclassical Schrödinger equations. Acta Numer. 20 (2011) 121-209. | MR | Zbl
, and ,[12] Sur les mesures de Wigner. Rev. Mat. Iberoamericana 9 (1993) 553-618. | MR | Zbl
and ,[13] Numerical approximation of quadratic observables of Schrödinger-type equations in the semi-classical limit. Numer. Math. 81 (1999) 595-630. | MR | Zbl
, and ,[14] Intensity images and statistics from numerical simulation of the wave propagation in 3-d random media. Appl. Optim. 247 (1988) 2111-2126.
and ,[15] Splitting methods. Acta Numer. 11 (2002) 341-434. | MR | Zbl
and ,[16] Turbulence in the stratified atmosphere: Recent theoretical developments and experimental results. Adv. Space Research 10 (1990) 25-36.
and ,[17] On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968) 506-517. | MR | Zbl
,[18] The parabolic approximation method, Wave propagation in underwater acoustics. In vol. 70 of Lect. Notes Phys. Springer (1977) 224-287. | MR
,Cité par Sources :