We present a parallel preconditioning method for the iterative solution of the time-harmonic elastic wave equation which makes use of higher-order spectral elements to reduce pollution error. In particular, the method leverages perfectly matched layer boundary conditions to efficiently approximate the Schur complement matrices of a block LDLT factorization. Both sequential and parallel versions of the algorithm are discussed and results for large-scale problems from exploration geophysics are presented.
Mots-clés : elastic wave, seismic wave, time-harmonic, frequency domain, spectral elements, parallel preconditioner, iterative solver, sparse-direct, perfectly matched layers, full waveform inversion
@article{M2AN_2014__48_2_433_0, author = {Tsuji, Paul and Poulson, Jack and Engquist, Bj\"orn and Ying, Lexing}, title = {Sweeping preconditioners for elastic wave propagation with spectral element methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {433--447}, publisher = {EDP-Sciences}, volume = {48}, number = {2}, year = {2014}, doi = {10.1051/m2an/2013114}, mrnumber = {3177852}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2013114/} }
TY - JOUR AU - Tsuji, Paul AU - Poulson, Jack AU - Engquist, Björn AU - Ying, Lexing TI - Sweeping preconditioners for elastic wave propagation with spectral element methods JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 433 EP - 447 VL - 48 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2013114/ DO - 10.1051/m2an/2013114 LA - en ID - M2AN_2014__48_2_433_0 ER -
%0 Journal Article %A Tsuji, Paul %A Poulson, Jack %A Engquist, Björn %A Ying, Lexing %T Sweeping preconditioners for elastic wave propagation with spectral element methods %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 433-447 %V 48 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2013114/ %R 10.1051/m2an/2013114 %G en %F M2AN_2014__48_2_433_0
Tsuji, Paul; Poulson, Jack; Engquist, Björn; Ying, Lexing. Sweeping preconditioners for elastic wave propagation with spectral element methods. ESAIM: Mathematical Modelling and Numerical Analysis , Multiscale problems and techniques. Special Issue, Tome 48 (2014) no. 2, pp. 433-447. doi : 10.1051/m2an/2013114. http://archive.numdam.org/articles/10.1051/m2an/2013114/
[1] 3-D Salt and Overthrust models. In SEG/EAGE 3-D Modeling Series 1. Tulsa, OK (1997).
, and ,[2] A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185-200. | MR | Zbl
,[3] A note on the existence and uniqueness of solutions of frequency domain elastic wave problems: a priori estimates in H1. J. Math Anal. Appl. 345 (2008) 396-404. | MR | Zbl
and ,[4] A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates. Microwave Optical Tech. Lett. 7 (1994) 599-604.
and ,[5] ScaLAPACK: A scalable linear algebra library for distributed memory concurrent computers, in Proc. of the Fourth Symposium on the Frontiers of Massively Parallel Computation, IEEE Comput. Soc. Press(1992) 120-127. | Zbl
, , and ,[6] Sweeping preconditioner for the Helmholtz equation: hierarchical matrix representation. Commun. Pure Appl. Math. 64 (2011) 697-735. | MR | Zbl
and ,[7] Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9 (2011) 686-710. | MR | Zbl
and ,[8] On a class of preconditioners for solving the Helmholtz equation. Appl. Numer. Math. 50 (2004) 409-425. | MR | Zbl
, and ,[9] Why it is difficult to solve Helmholtz problems with classical iterative methods, in vol. 83 of Numerical Analysis of Multiscale Problems. Edited by I. Graham, T. Hou, O. Lakkis and R. Scheichl. Springer-Verlag (2011) 325-361. | MR | Zbl
and ,[10] Construction and arithmetics of ℋ-matrices. Computing 70 (2003) 295-334. | MR | Zbl
and ,[11] A highly scalable parallel algorithm for sparse matrix factorization. IEEE Transactions on Parallel and Distributed Systems 8 (1997) 502-520.
, and ,[12] Sparse matrix factorization on massively parallel computers, in Proc. of the Conference on High Performance Computing, Networking, Storage and Analysis. Portland, OR (2009).
, and ,[13] Studies of FE/PML for exterior problems of time-harmonic elastic waves. Comput. Methods Appl. Mech. Eng. 195 (2006) 3854-3879. | MR | Zbl
and ,[14] The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Inc. (1987). | MR | Zbl
,[15] Spectral/hp element methods for CFD. Oxford University Press (1999). | MR | Zbl
,[16] Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139 (1999) 806-822.
and ,[17] The multifrontal method for sparse matrix solution: theory and practice. SIAM Review 34 (1992) 82-109. | MR | Zbl
.[18] A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54 (1984) 468-488. | Zbl
,[19] A parallel sweeping preconditioner for heterogeneous 3D Helmholtz equations e-prints ArXiv (2012). | MR | Zbl
, , and ,[20] Elemental: A new framework for distributed memory dense matrix computations. ACM Trans. Math. Software 39. | MR | Zbl
, , , and ,[21] Efficient parallel sparse triangular solution with selective inversion. Parallel Proc. Lett. 8 (1998) 29-40. | MR
,[22] A generalized minimum residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856-869. | MR | Zbl
and ,[23] A new implementation of sparse Gaussian elimination. ACM Trans. Math. Software 8 (1982) 256-276. | MR | Zbl
,[24] A sweeping preconditioner for time-harmonic Maxwell's equations with finite elements. J. Comput. Phys. 231 (2012) 3770-3783. | MR | Zbl
, and ,[25] A sweeping preconditioner for Yee's finite difference approximation of time-harmonic Maxwell's equations. Frontiers of Mathematics in China 7 (2012) 347-363. | MR | Zbl
and ,Cité par Sources :