In this article, we prove convergence of the weakly penalized adaptive discontinuous Galerkin methods. Unlike other works, we derive the contraction property for various discontinuous Galerkin methods only assuming the stabilizing parameters are large enough to stabilize the method. A central idea in the analysis is to construct an auxiliary solution from the discontinuous Galerkin solution by a simple post processing. Based on the auxiliary solution, we define the adaptive algorithm which guides to the convergence of adaptive discontinuous Galerkin methods.
Mots-clés : contraction, adaptive finite element, discontinuous Galerkin
@article{M2AN_2014__48_3_753_0, author = {Gudi, Thirupathi and Guzm\'an, Johnny}, title = {Convergence analysis of the lowest order weakly penalized adaptive discontinuous {Galerkin} methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {753--764}, publisher = {EDP-Sciences}, volume = {48}, number = {3}, year = {2014}, doi = {10.1051/m2an/2013119}, mrnumber = {3264333}, zbl = {1298.65174}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2013119/} }
TY - JOUR AU - Gudi, Thirupathi AU - Guzmán, Johnny TI - Convergence analysis of the lowest order weakly penalized adaptive discontinuous Galerkin methods JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 753 EP - 764 VL - 48 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2013119/ DO - 10.1051/m2an/2013119 LA - en ID - M2AN_2014__48_3_753_0 ER -
%0 Journal Article %A Gudi, Thirupathi %A Guzmán, Johnny %T Convergence analysis of the lowest order weakly penalized adaptive discontinuous Galerkin methods %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 753-764 %V 48 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2013119/ %R 10.1051/m2an/2013119 %G en %F M2AN_2014__48_3_753_0
Gudi, Thirupathi; Guzmán, Johnny. Convergence analysis of the lowest order weakly penalized adaptive discontinuous Galerkin methods. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 3, pp. 753-764. doi : 10.1051/m2an/2013119. http://archive.numdam.org/articles/10.1051/m2an/2013119/
[1] A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 39 (2007) 1777-1798. | MR | Zbl
,[2] A posteriori error estimation in finite element analysis. Pure and Applied Mathematics. Wiley-Interscience, John Wiley & Sons, New York (2000). | MR | Zbl
and ,[3] An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR | Zbl
,[4] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR | Zbl
, , and .[5] Uniformly convergent iterative methods for discontinuous Galerkin discretizations. J. Sci. Comput. 40 (2009) 4-36. | MR | Zbl
and ,[6] The Finite Element Method and its Reliability. The Claredon Press, Oxford University Press (2001) | MR
and ,[7] Adaptive Finite Element Methods for Differential Equations. Birkhåuser Verlag, Basel (2003). | MR | Zbl
and ,[8] A higher order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in Proc. of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, edited by R. Decuypere and G. Dilbelius, Technologisch Instituut, Antewerpen, Belgium (1997) 99-108.
, , , , and ,[9] A convergent nonconforming adaptive finite element method with quasi-optimal complexity. SIAM J. Numer. Anal. 47 (2010) 4639-4659. | MR | Zbl
, and ,[10] Private Communication (2013).
and ,[11] Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219-268. | MR | Zbl
, , and ,[12] Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48 (2010) 734-771. | MR | Zbl
and ,[13] The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008). | MR | Zbl
and ,[14] A weakly over-penalized non-symmetric interior penalty method. J. Numer. Anal. Ind. Appl. Math. 2 (2007) 35-48. | MR | Zbl
and ,[15] A weakly over-penalized symmetric interior penalty method. Electron. Trans. Numer. Anal. 30 (2008) 107-127. | MR | Zbl
, and ,[16] Discontiuous Galerkin Approximations for Elliptic Problems. Numer. Methods Partial Differ. Equ. 16 (2000) 365-378. | MR | Zbl
, , , and ,[17] Low order discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2008) 508-533. | MR | Zbl
and ,[18] Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103 (2006) 251-266. | MR | Zbl
and ,[19] Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. 75 (2006) 1033-1042. | MR | Zbl
and ,[20] Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46 (2008) 2524-2550. | MR | Zbl
, , and ,[21] Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78 (2009) 35-53. | MR | Zbl
, and ,[22] The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440-2463. | MR | Zbl
and ,[23] Conforming and Nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numer. 7 (1973) 33-76. | Numdam | MR | Zbl
and ,[24] A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. | MR | Zbl
,[25] Interior penalty procedures for elliptic and parabolic Galerkin methods. In vol. 58. Lect. Notes Phys. Springer-Verlag, Berlin (1976). | MR
and ,[26] Convergence analysis ofan adaptive interior penalty discontinuous Galerkin method. SIAM J. Numer. Anal. 47 (2008/09) 534-550. | MR | Zbl
, and ,[27] Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007) 641-665. | MR | Zbl
and ,[28] Convergence of a standard adaptive nonconforming finite element method with optimal complexity. Appl. Numer. Math. 60 (2010) 673-688. | MR | Zbl
, and ,[29] Data oscillation and convergence adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466-488. | MR | Zbl
, and ,[30] Convergence of adaptive finite element methods. SIAM Review 44 (2002) 631-658. | MR | Zbl
, and ,[31] Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245-269. | MR | Zbl
,[32] A Review of A Posteriori Error Estmation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1995). | Zbl
,[33] An elliptic collocation-finite-element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | MR | Zbl
,Cité par Sources :