This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat, Collège de France Seminar, vol. II. Paris 1979-1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98-138].
Mots-clés : heat equation, homogenization, infinite diffusion limit, thermal nonequilibrium models
@article{M2AN_2014__48_6_1583_0, author = {Desvillettes, Laurent and Golse, Fran\c{c}ois and Ricci, Valeria}, title = {Derivation of a homogenized two-temperature model from the heat equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1583--1613}, publisher = {EDP-Sciences}, volume = {48}, number = {6}, year = {2014}, doi = {10.1051/m2an/2014011}, mrnumber = {3264366}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2014011/} }
TY - JOUR AU - Desvillettes, Laurent AU - Golse, François AU - Ricci, Valeria TI - Derivation of a homogenized two-temperature model from the heat equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1583 EP - 1613 VL - 48 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2014011/ DO - 10.1051/m2an/2014011 LA - en ID - M2AN_2014__48_6_1583_0 ER -
%0 Journal Article %A Desvillettes, Laurent %A Golse, François %A Ricci, Valeria %T Derivation of a homogenized two-temperature model from the heat equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1583-1613 %V 48 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2014011/ %R 10.1051/m2an/2014011 %G en %F M2AN_2014__48_6_1583_0
Desvillettes, Laurent; Golse, François; Ricci, Valeria. Derivation of a homogenized two-temperature model from the heat equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 6, pp. 1583-1613. doi : 10.1051/m2an/2014011. http://archive.numdam.org/articles/10.1051/m2an/2014011/
[1] Transport through diffusive and nondiffusive regions, embedded objects and clear layers. SIAM J. Appl. Math. 62 (2002) 1677-1697. | MR | Zbl
,[2] Homogenization of evolution problems for a composite medium with very small and heavy inclusions. ESAIM: COCV 11 (2005) 266-284. | Numdam | MR | Zbl
,[3] A notion of capacity related to elasticity. Applications to homogenization. Arch. Rational Mech. Anal. 203 (2012) 137-187. | MR | Zbl
,[4] Nonlinear capacitary problems for a non periodic distribution of fibers. Appl. Math. Res. Express 2014 (2014) 1-51. | MR | Zbl
, and ,[5] Éléments d'analyse pour l'étude de quelques modèles d'écoulements de fluides visqueux incompressibles. Math. Appl., vol. 52. Springer Verlag, Berlin, Heidelberg (2006). | MR | Zbl
and ,[6] Fundamentals of Multiphase Flows. Cambridge University Press (2005). | Zbl
,[7] Analyse Fonctionnelle. Théorie et Applications. Masson, Paris (1987). | MR | Zbl
,[8] Un terme étrange venu d'ailleurs. In Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar vol. II, Paris 1979-1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98-138. | MR | Zbl
and ,[9] The Mean-Field Limit for Solid Particles in a Navier-Stokes Flow. J. Stat. Phys. 131 (2008) 941-967. | MR | Zbl
, and ,[10] The impact of thermal non-equilibrium and large-scale 2D/3D effects on debris bed reflooding and coolability. Nucl. Eng. Design 236 (2006) 2144-2163.
, , , and ,[11] Perturbations of a viscous incompressible fluid by small particles. Theor. Appl. Quest. Differ. Equ. Algebra 267 (1978) 173-177. | Zbl
and ,[12] Problèmes aux limites non homogènes et applications, vol. 1. Dunod, Paris (1968). | Zbl
and ,[13] Homogenization of heat conduction in materials with periodic inclusions of a perfect conductor. In Progress in partial differential equations: calculus of variations, applications. Pont-Mousson, 1991, vol. 267 of Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow (1992) 244-256. | MR | Zbl
and ,[14] Homogenization of the heat equation for a domain with a network of pipes with a well-mixed fluid. Ann. Mat. Pura Appl. 166 (1994) 227-251. | MR | Zbl
, ,[15] Ecoulement diphasique en milieu poreux: modèle à non-équilibre local. Int. J. Therm. Sci. 38 (1999) 239-249. | Zbl
, , ,[16] Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris, 1983. | MR | Zbl
and ,[17] Partial Differential Equations. Cambridge University Press, Cambridge (1987). | MR | Zbl
,Cité par Sources :