Moving Dirichlet boundary conditions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 6, pp. 1859-1876.

This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second order initial-boundary value problems. For the semi-discretization in space, a finite element scheme is presented which satisfies a discrete stability condition. Because of the saddle point structure of the underlying PDE, the resulting system is a DAE of index 3.

DOI : 10.1051/m2an/2014022
Classification : 65J10, 65M60, 65M20
Mots-clés : Dirichlet boundary conditions, operator DAE, inf-sup condition, wave equation
@article{M2AN_2014__48_6_1859_0,
     author = {Altmann, Robert},
     title = {Moving {Dirichlet} boundary conditions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1859--1876},
     publisher = {EDP-Sciences},
     volume = {48},
     number = {6},
     year = {2014},
     doi = {10.1051/m2an/2014022},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014022/}
}
TY  - JOUR
AU  - Altmann, Robert
TI  - Moving Dirichlet boundary conditions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2014
SP  - 1859
EP  - 1876
VL  - 48
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014022/
DO  - 10.1051/m2an/2014022
LA  - en
ID  - M2AN_2014__48_6_1859_0
ER  - 
%0 Journal Article
%A Altmann, Robert
%T Moving Dirichlet boundary conditions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2014
%P 1859-1876
%V 48
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014022/
%R 10.1051/m2an/2014022
%G en
%F M2AN_2014__48_6_1859_0
Altmann, Robert. Moving Dirichlet boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 6, pp. 1859-1876. doi : 10.1051/m2an/2014022. http://archive.numdam.org/articles/10.1051/m2an/2014022/

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003). | MR | Zbl

[2] R. Altmann. Index reduction for operator differential-algebraic equations in elastodynamics. Z. Angew. Math. Mech. (ZAMM) 93 (2013) 648-664. | MR

[3] R. Altmann. Modeling flexible multibody systems by moving Dirichlet boundary conditions. In Proc. of Multibody Dynamics 2013 - ECCOMAS Thematic Conference, Zagreb, Croatia, July 1-4 (2013).

[4] M. Arnold and B. Simeon, The simulation of pantograph and catenary: a PDAE approach. Preprint (1990), Technische Universität Darmstadt, Germany (1998).

[5] M. Arnold and B. Simeon, Pantograph and catenary dynamics: A benchmark problem and its numerical solution. Appl. Numer. Math. 34 (2000) 345-362. | MR | Zbl

[6] I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. | MR | Zbl

[7] I. Babuška and G.N. Gatica, On the mixed finite element method with Lagrange multipliers. Numer. Meth. Part. D. E. 19 (2003) 192-210. | MR | Zbl

[8] F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. Doi:10.1007/s002110050468. | MR | Zbl

[9] D. Braess, Finite Elements - Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, New York (2007). | Zbl

[10] J.H. Bramble, The Lagrange multiplier method for Dirichlet's problem. Math. Comput. 37 (1981) 1-11. | MR | Zbl

[11] S. C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008). | MR | Zbl

[12] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl

[13] F.J. Cavalieri, A. Cardona, V.D. Fachinotti and J. Risso, A finite element formulation for nonlinear 3D contact problems. Mecánica Comput. XXVI(16) (2007) 1357-1372.

[14] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl

[15] E. Emmrich and D. Šiška, Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization. Technical report, University of Liverpool (2012).

[16] L.C. Evans, Partial Differential Equations, 2nd edn. American Mathematical Society (AMS). Providence (1998). | Zbl

[17] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). | MR | Zbl

[18] M. Géradin and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach. John Wiley, Chichester (2001).

[19] J.A. Griepentrog, K. Gröger, H.-C. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary value problems. Math. Nachr. 241 (2002) 110-120. | MR | Zbl

[20] B. Gustafsson, High Order Difference Methods for Time Dependent PDE. Springer-Verlag, Berlin (2008). | MR | Zbl

[21] P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society (EMS), Zürich (2006). | MR | Zbl

[22] J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications. Vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968). | Zbl

[23] J.-L. Lions and W.A. Strauss, Some non-linear evolution equations. Bull. Soc. Math. France 93 (1965) 43-96. | Numdam | MR | Zbl

[24] M.K. Lipinski, A posteriori Fehlerschätzer für Sattelpunktsformulierungen nicht-homogener Randwertprobleme. Ph.D thesis, Ruhr Universität Bochum (2004). | Zbl

[25] J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Masson et Cie, Éditeurs, Paris (1967). | MR | Zbl

[26] L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286-292. | MR | Zbl

[27] G. Poetsch, J. Evans, R. Meisinger, W. Kortüm, W. Baldauf, A. Veitl and J. Wallaschek, Pantograph/catenary dynamics and control. Vehicle System Dynamics 28 (1997) 159-195.

[28] A.A. Shabana, Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005). | Zbl

[29] B. Simeon, On Lagrange multipliers in flexible multibody dynamics. Comput. Method. Appl. M 195 (2006) 6993-7005. | MR | Zbl

[30] B. Simeon, Computational flexible multibody dynamics. A differential-algebraic approach. Differential-Algebraic Equations Forum. Springer-Verlag, Berlin (2013). | MR | Zbl

[31] O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer-Verlag, New York (2008). | MR | Zbl

[32] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Stuttgart (1996). | Zbl

[33] J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). | MR | Zbl

[34] E. Zeidler, Nonlinear Functional Analysis and its Applications IIa: Linear Monotone Operators. Springer-Verlag, New York (1990). | MR | Zbl

Cité par Sources :