This paper develops a framework to include Dirichlet boundary conditions on a subset of the boundary which depends on time. In this model, the boundary conditions are weakly enforced with the help of a Lagrange multiplier method. In order to avoid that the ansatz space of the Lagrange multiplier depends on time, a bi-Lipschitz transformation, which maps a fixed interval onto the Dirichlet boundary, is introduced. An inf-sup condition as well as existence results are presented for a class of second order initial-boundary value problems. For the semi-discretization in space, a finite element scheme is presented which satisfies a discrete stability condition. Because of the saddle point structure of the underlying PDE, the resulting system is a DAE of index 3.
Mots-clés : Dirichlet boundary conditions, operator DAE, inf-sup condition, wave equation
@article{M2AN_2014__48_6_1859_0, author = {Altmann, Robert}, title = {Moving {Dirichlet} boundary conditions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1859--1876}, publisher = {EDP-Sciences}, volume = {48}, number = {6}, year = {2014}, doi = {10.1051/m2an/2014022}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2014022/} }
TY - JOUR AU - Altmann, Robert TI - Moving Dirichlet boundary conditions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1859 EP - 1876 VL - 48 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2014022/ DO - 10.1051/m2an/2014022 LA - en ID - M2AN_2014__48_6_1859_0 ER -
Altmann, Robert. Moving Dirichlet boundary conditions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 6, pp. 1859-1876. doi : 10.1051/m2an/2014022. http://archive.numdam.org/articles/10.1051/m2an/2014022/
[1] Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003). | MR | Zbl
and ,[2] Index reduction for operator differential-algebraic equations in elastodynamics. Z. Angew. Math. Mech. (ZAMM) 93 (2013) 648-664. | MR
.[3] Modeling flexible multibody systems by moving Dirichlet boundary conditions. In Proc. of Multibody Dynamics 2013 - ECCOMAS Thematic Conference, Zagreb, Croatia, July 1-4 (2013).
.[4] The simulation of pantograph and catenary: a PDAE approach. Preprint (1990), Technische Universität Darmstadt, Germany (1998).
and ,[5] Pantograph and catenary dynamics: A benchmark problem and its numerical solution. Appl. Numer. Math. 34 (2000) 345-362. | MR | Zbl
and ,[6] The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. | MR | Zbl
,[7] On the mixed finite element method with Lagrange multipliers. Numer. Meth. Part. D. E. 19 (2003) 192-210. | MR | Zbl
and ,[8] The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. Doi:10.1007/s002110050468. | MR | Zbl
,[9] Finite Elements - Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, New York (2007). | Zbl
,[10] The Lagrange multiplier method for Dirichlet's problem. Math. Comput. 37 (1981) 1-11. | MR | Zbl
,[11] The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008). | MR | Zbl
and ,[12] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl
and ,[13] A finite element formulation for nonlinear 3D contact problems. Mecánica Comput. XXVI(16) (2007) 1357-1372.
, , and ,[14] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[15] Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization. Technical report, University of Liverpool (2012).
and ,[16] Partial Differential Equations, 2nd edn. American Mathematical Society (AMS). Providence (1998). | Zbl
,[17] Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). | MR | Zbl
and ,[18] Flexible Multibody Dynamics: A Finite Element Approach. John Wiley, Chichester (2001).
and ,[19] Interpolation for function spaces related to mixed boundary value problems. Math. Nachr. 241 (2002) 110-120. | MR | Zbl
, , and ,[20] Difference Methods for Time Dependent PDE. Springer-Verlag, Berlin (2008). | MR | Zbl
,[21] Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society (EMS), Zürich (2006). | MR | Zbl
and ,[22] Problèmes aux Limites Non Homogènes et Applications. Vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968). | Zbl
and ,[23] Some non-linear evolution equations. Bull. Soc. Math. France 93 (1965) 43-96. | Numdam | MR | Zbl
and ,[24] A posteriori Fehlerschätzer für Sattelpunktsformulierungen nicht-homogener Randwertprobleme. Ph.D thesis, Ruhr Universität Bochum (2004). | Zbl
,[25] Les Méthodes Directes en Théorie des Equations Elliptiques. Masson et Cie, Éditeurs, Paris (1967). | MR | Zbl
,[26] An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286-292. | MR | Zbl
and ,[27] Pantograph/catenary dynamics and control. Vehicle System Dynamics 28 (1997) 159-195.
, , , , , and ,[28] Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005). | Zbl
,[29] On Lagrange multipliers in flexible multibody dynamics. Comput. Method. Appl. M 195 (2006) 6993-7005. | MR | Zbl
,[30] Computational flexible multibody dynamics. A differential-algebraic approach. Differential-Algebraic Equations Forum. Springer-Verlag, Berlin (2013). | MR | Zbl
,[31] Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer-Verlag, New York (2008). | MR | Zbl
,[32] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Stuttgart (1996). | Zbl
,[33] Partial Differential Equations. Cambridge University Press, Cambridge (1987). | MR | Zbl
,[34] Nonlinear Functional Analysis and its Applications IIa: Linear Monotone Operators. Springer-Verlag, New York (1990). | MR | Zbl
,Cité par Sources :