A two-phase shallow debris flow model with energy balance
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 101-140.

This paper proposes a thin layer depth-averaged two-phase model provided by a dissipative energy balance to describe avalanches of solid-fluid mixtures. This model is derived from a 3D two-phase model based on the equations proposed by Jackson [The Dynamics of Fluidized Particles. Cambridges Monographs on Mechanics (2000)] which takes into account the force of buoyancy and the forces of interaction between the solid and fluid phases. Jackson’s model is based on mass and momentum conservation within the two phases, i.e. two vector and two scalar equations. This system has five unknowns: the solid volume fraction, the solid and fluid pressures and the solid and fluid velocities, i.e. three scalars and two vectors. As a result, an additional equation is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson’s work. In particular, Pitman and Le [Philos. Trans. R. Soc. A 363 (2005) 799–819] replaced this closure simply by imposing an extra boundary condition. If the pressure is assumed to be hydrostatic, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here a closure equation to complete Jackson’s model, imposing incompressibility of the solid phase. We prove that the resulting whole 3D model is compatible with a dissipative energy balance. From this model, we deduce a 2D depth-averaged model and we also prove that the energy balance associated with this model is dissipative. Finally, we propose a numerical scheme to approximate the depth-averaged model. We present several numerical tests for the 1D case that are compared to the results of the model proposed by Pitman and Le.

Reçu le :
DOI : 10.1051/m2an/2014026
Classification : 65C20, 81T80, 91B74, 97M10
Mots-clés : Granular flows, two-phase flows, thin layer approximation, energy balance, non-conservative systems, projection method, finite volume schemes
Bouchut, F. 1 ; Fernández-Nieto, E.D. 2 ; Mangeney, A. 3, 4 ; Narbona-Reina, G. 2

1 Université Paris-Est, Laboratoire d’Analyse et de Mathématiques Appliquées (UMR 8050), CNRS, UPEMLV, UPEC, 77454 Marne-la-Vallée, France.
2 Departamento de Matemática Aplicada I, Universidad de Sevilla. E.T.S. Arquitectura. Avda, Reina Mercedes, s/n. 41012 Sevilla, Spain.
3 Université Paris Diderot, Sorbone Paris Cité, Institut de Physique du Globe de Paris, Seismology group, 1 rue Jussieu, 75005 Paris, France.
4 ANGE group INRIA, Jacques Louis Lions, CETMEF. 
@article{M2AN_2015__49_1_101_0,
     author = {Bouchut, F. and Fern\'andez-Nieto, E.D. and Mangeney, A. and Narbona-Reina, G.},
     title = {A two-phase shallow debris flow model with energy balance},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {101--140},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/m2an/2014026},
     mrnumber = {3342194},
     zbl = {1310.76172},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014026/}
}
TY  - JOUR
AU  - Bouchut, F.
AU  - Fernández-Nieto, E.D.
AU  - Mangeney, A.
AU  - Narbona-Reina, G.
TI  - A two-phase shallow debris flow model with energy balance
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 101
EP  - 140
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014026/
DO  - 10.1051/m2an/2014026
LA  - en
ID  - M2AN_2015__49_1_101_0
ER  - 
%0 Journal Article
%A Bouchut, F.
%A Fernández-Nieto, E.D.
%A Mangeney, A.
%A Narbona-Reina, G.
%T A two-phase shallow debris flow model with energy balance
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 101-140
%V 49
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014026/
%R 10.1051/m2an/2014026
%G en
%F M2AN_2015__49_1_101_0
Bouchut, F.; Fernández-Nieto, E.D.; Mangeney, A.; Narbona-Reina, G. A two-phase shallow debris flow model with energy balance. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 101-140. doi : 10.1051/m2an/2014026. http://archive.numdam.org/articles/10.1051/m2an/2014026/

T.B. Anderson and R. Jackson, A fluid mechanical description of fluidized beds. Ind. Eng. Chem. Fundam. 6 (1967) 527–539. | DOI

K. Anderson, S. Sundaresan and R. Jackson, Instabilities and the formation of bubbles in fluidized beds. J. Fluid Mech. 303 (1995) 327–366. | DOI | Zbl

T. Aste, Circle, sphere, and drop packings. Phys. Rev. E 53 (1996) 2571. | DOI | MR

F. Boyer, O. Pouliquen and E. Guazzelli, Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech. 686 (2011) 5–25. | DOI | Zbl

F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2 (2004) 359–389. | DOI | MR | Zbl

F. Bouchut, A. Mangeney-Castelnau, B. Perthame and J.-P. Vilotte, A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows. C.R. Acad. Sci. Paris, Sér. I 336 (2003) 531–536. | DOI | MR | Zbl

F. Bouchut, E. Fernandez-Nieto, A. Mangeney and P.-Y. Lagrée, On new erosion models of Savage-Hutter type for avalanches. Acta Mech. 199 (2008) 181–208. | DOI | Zbl

M. Farin, A. Mangeney and O. Roche, Dynamics, deposit and erosion processes in granular collapse over sloping beds. J. Geophys. Res. 119 (2013) 504–532.

P. Favreau, A. Mangeney, A. Lucas, G. Crosta and F. Bouchut, Numerical modeling of landquakes. Geophys. Res. Lett. 37 (2010) L15305. | DOI

D.L. George and R.M. Iverson, A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure. Italian J. Engrg. Geol. Environ. (2011) DOI:10.4408/IJEGE.2011-03.B-047.

M. Goodman and S. Cowin, Two problems in the gravity flow of granular materials. J. Fluid Mech. 45 (1971) 321–339. | DOI | Zbl

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics. Kluwer Academic Publishers (1983).

H.J. Herrmann, R. Mahmoodi Baram and M. Wackenhut, Searching for the perfect packing. Phys. A 330 (2003) 77–82. | DOI | MR | Zbl

O. Hungr and S.G. Evans, Entrainment of debris in rock avalanches: An analysis of a long run-out mechanism. Bull. Geol. Soc. Am. 116 (2004) 1240–1252. | DOI

R.M. Iverson, The physics of debris flows, Rev. Geophys. 35 (1997) 245–296. | DOI

R.M. Iverson, R.P. Denlinger, Flow of variably fluidized granular masses across three-dimensional terrain 1: Coulomb mixture theory. J. Geophys. Res. 106 (2001) 537–552. | DOI

R.M. Iverson, M. Logan, R.G. Lahusen and M. Berti, The perfect debris flow? aggregated results from 28 large-scale experiments. J. Geophys. Res. 115 (2010) F03005. DOI:10.1029/2009JF001514.

R.M. Iverson, M.E. Reid, M. Logan, R.G. Lahusen, J.W. Godt and J.P. Griswold, Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience 4 (2011) 116–121. | DOI

R. Jackson, The Dynamics of Fluidized Particles. Cambridges Monographs on Mechanics (2000). | MR | Zbl

G. Jhonson, M. Massoudi and K.R. Rajagopal, A review of interaction mechanisms in fluidsolid flows. Technical Report. DOE/PETC/TR-90/9, U.S. Dep. of Energy, Pittsburgh Energy Tech. Ctr., Pittsburgh, USA (1990).

F. Legros, The mobility of long-runout landslides. Eng. Geol. 63 (2002) 301–331. | DOI

A. Lucas and A. Mangeney, Mobility and topographic effects for large Valles Marineris landslides on Mars. Geophys. Res. Lett. 34 (2007) L10201. | DOI

A. Lucas, A. Mangeney and J.P. Ampuero, Frictional weakening in landslides on Earth and on other planetary bodies. Nature Commun. 5 (2014) 3417. | DOI

A. Mangeney-Castelnau, J.P. Vilotte, M.O. Bristeau, B. Perthame, F. Bouchut, C. Simeoni and S. Yernini, Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. 108 (2003) 2527. | DOI

A. Mangeney-Castelnau, F. Bouchut, J.P. Vilotte, E. Lajeunesse, A. Aubertin and M. Pirulli, On the use of Saint-Venant equations for simulating the spreading of a granular mass. J. Geophys. Res. 110 (2005) B09103.

A. Mangeney, L. S. Tsimring, D. Volfson, I.S. Aranson and F. Bouchut, Avalanche mobility induced by the presence of an erodible bed and associated entrainment. Geophys. Res. Lett. 34 (2007) L22401. | DOI

A. Mangeney, O. Roche, O. Hungr, N. Mangold, G. Faccanoni and A. Lucas, Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res.-Earth Surf. 115 (2010) F03040. | DOI

A. Mangeney, Landslide boost from entrainment. Nature Geosci. 4 (2011) 77–78. | DOI

N. Mangold, A. Mangeney, V. Migeon, V. Ansan, A. Lucas, D. Baratoux and F. Bouchut, Sinuous gullies on Mars: Frequency, distribution, and implications for flow properties. J. Geophys. Res. Planets 115 (2010) E11001. | DOI

C. Meruane, A. Tamburrino, O. Roche, On the role of the ambient fluid on gravitational granular flow dynamics. J. Fluid. Mech. 648 (2010) 381–404. | DOI | MR | Zbl

L. Moretti, A. Mangeney, Y. Capdeville, E. Stutzmann, C. Christian Huggel, D. Schneider and F. Francois Bouchut, Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves. Geophys. Res. Lett. 39 (2012) L16402. | DOI

M.J. Niebling, E.G. Flekkoy, K.J. Mâloy and R. Toussaint, Mixing of a granular layer falling through a fluid. Phys. Rev. E 82 (2010) 011301. | DOI

M. Ouriemi, P. Aussillous and E. Guazzelli, Sediment dynamics. Part I: Bed-load transport by shearing flows. J. Fluid Mech. 636 (2009) 295–319. | DOI | MR | Zbl

C. Parés and M.J. Castro, On the well-balance property of Roe’s method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38 (2004) 821–852. | DOI | Numdam | MR | Zbl

M. Pailha and O. Pouliquen, A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech. 633 (2009) 115–135. | DOI | MR | Zbl

M. Pelanti, F. Bouchut and A. Mangeney, A Roe-type scheme for two-phase shallow granular flows over variable topography. ESAIM: M2AN 42 (2008) 851–885. | DOI | Numdam | MR | Zbl

M. Pelanti, F. Bouchut and A. Mangeney, A Riemann solver for single-phase and two-phase shallow flow models based on relaxation. Relations with Roe and VFRoe solvers. J. Comput. Phys. 230 (2011) 515–550. | DOI | MR | Zbl

E.B. Pitman and L. Le, A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A 363 (2005) 1573–1601. | DOI | MR | Zbl

S.P. Pudasaini, Y. Wang and K. Hutter, Modelling debris flows down general channels. Natural Hazards Earth System Sci. 5 (2005) 799–819. | DOI

L. Rondon, O. Pouliquen and P. Aussillous, Granular collapse in a fluid: role of the initial volume fraction. Phys. Fluids 23 (2011) 073301. | DOI

J.F. Richardson and W.N. Zaki, Sedimentation and Fluuidization: part I. Trans. Inst. Chem. Eng. 32 (1954) 35–53.

O. Roche, M. Attali, A. Mangeney and A. Lucas, On the run out distance of geophysical gravitational flows: insight from fluidized granular collapse experiments. Earth Planet. Sci. Lett. 311 (2011) 375–385. | DOI

O. Roche, Y. Niño, A. Mangeney, B. Brand, N. Pollock and G.A. Valentine, Dynamic pore pressure variations induce substrate erosion by pyroclastic flows, Geology 41 (2013) 1107–1110. | DOI

S. Roux and F. Radjai, Texture-dependent rigid plastic behavior. In Proc. of Physics of Dry Granular Media 1997. Edited by H.J. Herrmann. Kluwer. Cargèse, France (1998) 305–311.

S.B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline. J. Fluid Mach. 199 (1989) 177–215. | DOI | MR | Zbl

U.E. Shamy and M. Zhegal, Coupled continuum discrete model for saturated granular materials. J. Engrg. Mech. 131 (2005) 413–426. | DOI

V. Topin, F. Dubois, Y. Monerie, F. Perales, A. Wachs: Micro-rheology of dense particulate flows: application to immersed avalanches. J. Non-Newtonian Fluid 166 (2011) 63–72. | DOI | Zbl

C. Voivret, F. Radjai and J.Y. Delenne, M.S. El Youssoufi, Space-filling properties of polydisperse granular media. Phys. Rev. E 76 (2007) 021301. | DOI

Cité par Sources :