The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 193-220.

A finite volume scheme based on minimization of a certain cell functional is constructed for unstructured polygonal meshes. This new scheme has a local stencil, allows arbitrary diffusion tensors, leads to a symmetric positive definite diffusion matrix in case that edge unknowns are defined at the midpoints of edges, and is linearity-preserving, i.e., preserves linear solutions. Under a very weak geometry condition, the stability result and discrete H 1 error estimate of the scheme is obtained through a discrete functional approach. Finally, numerical results on various mesh types (including a particular jigsaw puzzle mesh) demonstrate the good performance of the scheme and validate the theoretical analysis.

DOI : 10.1051/m2an/2014030
Classification : 65N12, 65N08, 35J25
Mots-clés : Cell functional minimization, finite volume scheme, diffusion problem, polygonal mesh, convergence, stability, error estimate
Yin, Li 1 ; Wu, Jiming 1 ; Gao, Zhiming 1

1 Institute of Applied Physics and Computational Mathematics, P.O. Box 8009-9, Beijing 100088, P.R. China.
@article{M2AN_2015__49_1_193_0,
     author = {Yin, Li and Wu, Jiming and Gao, Zhiming},
     title = {The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {193--220},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/m2an/2014030},
     mrnumber = {3342197},
     zbl = {1314.65140},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014030/}
}
TY  - JOUR
AU  - Yin, Li
AU  - Wu, Jiming
AU  - Gao, Zhiming
TI  - The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 193
EP  - 220
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014030/
DO  - 10.1051/m2an/2014030
LA  - en
ID  - M2AN_2015__49_1_193_0
ER  - 
%0 Journal Article
%A Yin, Li
%A Wu, Jiming
%A Gao, Zhiming
%T The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 193-220
%V 49
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014030/
%R 10.1051/m2an/2014030
%G en
%F M2AN_2015__49_1_193_0
Yin, Li; Wu, Jiming; Gao, Zhiming. The cell functional minimization scheme for the anisotropic diffusion problems on arbitrary polygonal grids. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 193-220. doi : 10.1051/m2an/2014030. http://archive.numdam.org/articles/10.1051/m2an/2014030/

I. Aavatsmark, G.T. Eigestad, B.T. Mallison and J.M. Nordbotten, A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differ. Eq. 24 (2008) 1329–1360. | DOI | MR | Zbl

O. Angelini, C. Chavant, E. Chénier and R. Eymard, A finite volume scheme for diffusion problem on general meshes applying monitny constraints. SIAM J. Numer. Anal. 47 (2010) 4193–4213. | DOI | MR | Zbl

F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Model. Methods. Appl. Sci. 15 (2005) 1533–1551. | DOI | MR | Zbl

F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3682–3692. | DOI | MR | Zbl

J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Model. Methods. Appl. Sci. 20 (2010) 265–295. | DOI | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Handb. Numer. Anal. Elsevier Sciences (2000). | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: Convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007) 403–406. | DOI | MR | Zbl

R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite volumes for complex applications. V. ISTE, London (2008) 659–692. | MR

D. Li and G. Chen, Introduction to difference methods for parabolic equation. Beijing, Science Press (1995) (Chinese).

J.E. Morel, R.M. Roberts and M.J. Shashkov, A local support-operators diffusion discretization scheme for quadrilateral r-z meshes. J. Comput. Phys. 144 (1998) 17–51. | DOI | MR | Zbl

J.E. Roberts and J.-M.Thomas, Mixed and hybrid finite element methods. Handb. Numer. Anal. Elsevier Sciences (1987).

Y. Saad, Iterative method for sparse linear systems. PWS publishing, New York (1996). | Zbl

J. Wu, Z. Dai, Z. Gao and G. Yuan, Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes, J. Comput. Phys. 229 (2010) 3382–3401. | DOI | MR | Zbl

L. Yin, J. Wu and Y. Yao, A cell functional minimization scheme for parabolic problem. J. Comput. Phys. 229 (2010) 8935–8951. | DOI | MR | Zbl

L. Yin, J. Wu and Y. Yao, A cell functional minimization scheme for domain decomposition method on non-orthogonal and non-matching meshes. Numer. Math. 128 (2014) 773–804. | DOI | MR | Zbl

Y. Coudiére, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional diffusion convection problem. Math. Model. Numer. Anal. 33 (1999) 493–516. | DOI | Numdam | MR | Zbl

Cité par Sources :