We present the first a priori error analysis of the -version of the hybridizable discontinuous Galkerin (HDG) methods applied to convection-dominated diffusion problems. We show that, when using polynomials of degree no greater than , the -error of the scalar variable converges with order on general conforming quasi-uniform simplicial meshes, just as for conventional DG methods. We also show that the method achieves the optimal -convergence order of on special meshes. Moreover, we discuss a new way of implementing the HDG methods for which the spectral condition number of the global matrix is independent of the diffusion coefficient. Numerical experiments are presented which verify our theoretical results.
DOI : 10.1051/m2an/2014032
Mots-clés : HDG, convection-dominated diffusion
@article{M2AN_2015__49_1_225_0, author = {Fu, Guosheng and Qiu, Weifeng and Zhang, Wujun}, title = {An analysis of {HDG} methods for convection-dominated diffusion problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {225--256}, publisher = {EDP-Sciences}, volume = {49}, number = {1}, year = {2015}, doi = {10.1051/m2an/2014032}, zbl = {1314.65142}, mrnumber = {3342199}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2014032/} }
TY - JOUR AU - Fu, Guosheng AU - Qiu, Weifeng AU - Zhang, Wujun TI - An analysis of HDG methods for convection-dominated diffusion problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 225 EP - 256 VL - 49 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2014032/ DO - 10.1051/m2an/2014032 LA - en ID - M2AN_2015__49_1_225_0 ER -
%0 Journal Article %A Fu, Guosheng %A Qiu, Weifeng %A Zhang, Wujun %T An analysis of HDG methods for convection-dominated diffusion problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 225-256 %V 49 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2014032/ %R 10.1051/m2an/2014032 %G en %F M2AN_2015__49_1_225_0
Fu, Guosheng; Qiu, Weifeng; Zhang, Wujun. An analysis of HDG methods for convection-dominated diffusion problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 225-256. doi : 10.1051/m2an/2014032. http://archive.numdam.org/articles/10.1051/m2an/2014032/
Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems. SIAM J. Numer. Anal. 47 (2009) 1391–1420. | DOI | MR | Zbl
and ,A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175 (1999) 311–341. | DOI | MR | Zbl
and ,A Priori Error Analysis of Residual-freeBubbles for Advection-Diffusion Problems. SIAM J. Numer. Anal. 36 (1999) 1933–1948. | DOI | MR | Zbl
, , , and ,Residual-free bubbles for advection-diffusion problems: the general error analysis. Numer. Math. 85 (2000) 31–47. | DOI | MR | Zbl
, and ,Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259. | DOI | MR | Zbl
and ,Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems. SIAM J. Numer. Anal. 44 (2006) 1420–1440. | DOI | MR | Zbl
, and ,Stabilized Galerkin Approximation of Convection-Diffusion-Reaction equations: Discrete Maximum Principle and Convergence. Math. Comput. 74 (2005) 1637–1652. | DOI | MR | Zbl
and ,An optimal a priori error estimate for the hp–version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71 (2002) 455–478. | DOI | MR | Zbl
, , and ,Analysis of variable-degree HDG methods for convection-diffusion equations. Part I: General nonconforming meshes. IMA J. Num. Anal. 32 (2012) 1267–1293. | DOI | MR | Zbl
and ,Y. Chen and B. Cockburn, Analysis of variable-degree HDG methods for convection-diffusion equations. Part II: Semimatching nonconforming meshes. To appear in Math. Comput. | MR | Zbl
B. Cockburn, A Discontinuous Galerkin methods for convection-dominated problems, In High-order methods for computational physics, vol. 9 of Lect. Notes Comput. Sci. Eng. Springer, Berlin (1999) 69–224. | MR | Zbl
B. Cockburn and C. Dawson, Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions, In The mathematics of finite elements and applications, X, MAFELAP 1999 (Uxbridge). Elsevier, Oxford (2000) 225–238. | MR | Zbl
An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems. J. Sci. Comput. 32 (2007) 233–262. | DOI | MR | Zbl
and ,A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77 (2008) 1887–1916. | DOI | MR | Zbl
, and ,Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 48 (2008) 1250–1265. | DOI | MR | Zbl
, and ,A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. J. Sci. Comput. 31 (2009) 3827–3846. | MR | Zbl
, , , and ,Optimal Convergence of the Original DG Method on Special Meshes for Variable Transport Velocity. SIAM J. Numer. Anal. 46 (2010) 133–146. | DOI | MR | Zbl
, , and ,B. Cockburn, O. Dubois, J. Gopalakrishnan and S. Tan, Multigrid for an HDG method. To appear in IMA J. Numer. Anal. | MR | Zbl
Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | MR | Zbl
, and ,A projection-based error analysis of HDG methods. Math. Comput. 79 (2010) 1351–1367. | DOI | MR | Zbl
, and ,Conditions for superconvergence of HDG Methods for second-order elliptic problems. Math. Comput. 81 (2012) 1327–1353. | DOI | MR | Zbl
, and ,The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. | DOI | MR | Zbl
and ,Runge–Kutta discontinuous Galerkin method for convection-dominated problems. J. Sci. Comput. 16 (2001) 173–261. | DOI | MR | Zbl
and ,The asymptotic behavior of the first real eigenvalue of second order elliptic operators with a small parameter in the highest derivatives. II. Indiana Univ. Math. J. 23 (1973-1974) 991–1011. | DOI | MR | Zbl
, and ,Boundary layers in linear elliptic singular perturbation problems. SIAM Rev. 44 (1972). | MR | Zbl
,A hybrid mixed discontinuous Galerkin finite-element method for convection diffusion problems. IMA J. Num. Anal. 30 (2010) 1206–1234. | DOI | MR | Zbl
and ,H. Goering, A. Felgenhauer, G. Lube, H.-G. Roos and L. Tobiska, Singularly perturbed differential equations. Akademie-Verlag, Berlin (1983). | MR | Zbl
A multilevel discontinuous Galerkin method. Numer. Math. 95 (2003) 527–550. | DOI | MR | Zbl
and ,Stabilized hp–finite element methods for first order hyperbolic problems. SIAM J. Numer. Anal. 37 (2000) 1618–1643. | DOI | MR | Zbl
, and ,Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163. | DOI | MR | Zbl
, and ,A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method. Comput. Methods Appl. Mech. Engrg. 195 (2006) 2761–2787. | DOI | MR | Zbl
, , and ,An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46 (1986) 1–26. | DOI | MR | Zbl
and ,A flow-aligning algorithm for convection-dominated problems. Int. J. Numer. Methods Engrg. 46 (1999) 993–1000. | DOI | MR | Zbl
,A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28 (1991) 133–140. | DOI | MR | Zbl
,W. Reed and T. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA- UR-73-479, Los Alamos Scientific Laboratory (1973).
An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. J. Comput. Phys. 288 (2009) 3232–3254. | DOI | MR | Zbl
, and ,An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. J. Comput. Phys. 288 (2009) 8841–8855. | DOI | MR | Zbl
, and ,H.-G. Roos, Robust numerical methods for singularly perturbed differential equations: a survey covering 2008–2012. ISRN Appl. Math. (2012) 1–30. | MR | Zbl
H.-G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems. 2nd edition. In vol. 24 of Springer Series Comput. Math. Springer-Verlag, Berlin (2008). | MR | Zbl
Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers. Numer. Math. 100 (2005) 735–759. | DOI | MR | Zbl
and ,Cité par Sources :