On the stable numerical approximation of two-phase flow with insoluble surfactant
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 421-458.

We present a parametric finite element approximation of two-phase flow with insoluble surfactant. This free boundary problem is given by the Navier–Stokes equations for the two-phase flow in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface that separates the two phases. We combine the evolving surface finite element method with an approach previously introduced by the authors for two-phase Navier–Stokes flow, which maintains good mesh properties. The derived finite element approximation of two-phase flow with insoluble surfactant can be shown to be stable. Several numerical simulations demonstrate the practicality of our numerical method.

Reçu le :
DOI : 10.1051/m2an/2014039
Classification : 35Q35, 65M12, 76D05, 76D27, 76M10
Mots-clés : Incompressible two-phase flow, insoluble surfactants, finite elements, front tracking, ALE ESFEM
Barrett, John W. 1 ; Garcke, Harald 2 ; Nürnberg, Robert 1

1 Department of Mathematics, Imperial College, London, SW7 2AZ, UK.
2 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany.
@article{M2AN_2015__49_2_421_0,
     author = {Barrett, John W. and Garcke, Harald and N\"urnberg, Robert},
     title = {On the stable numerical approximation of two-phase flow with insoluble surfactant},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {421--458},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/m2an/2014039},
     zbl = {1315.35156},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014039/}
}
TY  - JOUR
AU  - Barrett, John W.
AU  - Garcke, Harald
AU  - Nürnberg, Robert
TI  - On the stable numerical approximation of two-phase flow with insoluble surfactant
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 421
EP  - 458
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014039/
DO  - 10.1051/m2an/2014039
LA  - en
ID  - M2AN_2015__49_2_421_0
ER  - 
%0 Journal Article
%A Barrett, John W.
%A Garcke, Harald
%A Nürnberg, Robert
%T On the stable numerical approximation of two-phase flow with insoluble surfactant
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 421-458
%V 49
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014039/
%R 10.1051/m2an/2014039
%G en
%F M2AN_2015__49_2_421_0
Barrett, John W.; Garcke, Harald; Nürnberg, Robert. On the stable numerical approximation of two-phase flow with insoluble surfactant. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 421-458. doi : 10.1051/m2an/2014039. http://archive.numdam.org/articles/10.1051/m2an/2014039/

A. Alke and D. Bothe, 3D numerical modeling of soluble surfactant at fluidic interfaces based on the volume-of-fluid method. FDMP Fluid Dyn. Mater. Process. 5 (2009) 345–372.

E. Bänsch, Finite element discretization of the Navier–Stokes equations with a free capillary surface. Numer. Math. 88 (2001) 203–235. | DOI | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, A stable parametric finite element discretization of two-phase Navier–Stokes flow. J. Sci. Comput. To appear in DOI: 10.1007/s10915-014-9885-2.

J.W. Barrett and R. Nürnberg, Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323–363. | DOI | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, Finite element approximation of surfactant spreading on a thin film. SIAM J. Numer. Anal. 41 (2003) 1427–1464. | DOI | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, A parametric finite element method for fourth order geometric evolution equations. J. Comput. Phys. 222 (2007) 441–462. | DOI | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in 3 . J. Comput. Phys. 227 (2008) 4281–4307. | DOI | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, On stable parametric finite element methods for the Stefan problem and the Mullins–Sekerka problem with applications to dendritic growth. J. Comput. Phys. 229 (2010) 6270–6299. | DOI | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, Eliminating spurious velocities with a stable approximation of viscous incompressible two-phase Stokes flow. Comput. Methods Appl. Mech. Engrg. 267 (2013) 511–530. | DOI | MR | Zbl

J.W. Barrett, H. Garcke and R. Nürnberg, Finite element approximation of one-sided Stefan problems with anisotropic, approximately crystalline, Gibbs–Thomson law. Adv. Differ. Eq. 18 (2013) 383–432. | Zbl

K. Bäumler and E. Bänsch, A subspace projection method for the implementation of interface conditions in a single-drop flow problem. J. Comput. Phys. 252 (2013) 438–457. | DOI | Zbl

D. Bothe, M. Köhne and J. Prüss, On two-phase flows with soluble surfactant. Preprint (2012). Available at . | arXiv

D. Bothe and J. Prüss, Stability of equilibria for two-phase flows with soluble surfactant. Quart. J. Mech. Appl. Math. 63 (2010) 177–199. | DOI | Zbl

D. Bothe, J. Prüss and G. Simonett, Well-posedness of a two-phase flow with soluble surfactant. In Nonlinear elliptic and parabolic problems. In vol. 64 of Progr. Nonlinear Differ. Eq. Appl. (2005) 37–61. | Zbl

R. Clift, J.R. Grace and M.E. Weber, Bubbles, drops, and particles. Dover Publishing, Mineola, N.Y. (2005).

K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232. | DOI | Zbl

M.A. Drumright-Clarke and Y. Renardy, The effect of insoluble surfactant at dilute concentration on drop breakup under shear with inertia. Phys. Fluids 16 (2004) 14–21. | DOI | Zbl

G. Dziuk, An algorithm for evolutionary surfaces. Numer. Math. 58 (1991) 603–611. | DOI | Zbl

G. Dziuk and C.M. Elliott, Finite elements on evolving surfaces. IMA J. Numer. Anal. 27 (2007) 262–292. | DOI | Zbl

G. Dziuk and C.M. Elliott, Finite element methods for surface PDEs. Acta Numer. 22 (2013) 289–396. | DOI | Zbl

C.M. Elliott, B. Stinner, V. Styles and R. Welford, Numerical computation of advection and diffusion on evolving diffuse interfaces. IMA J. Numer. Anal. 31 (2011) 786–812. | DOI | Zbl

C.M. Elliott and V. Styles, An ALE ESFEM for solving PDEs on evolving surfaces. Milan J. Math. 80 (2012) 469–501. | DOI | Zbl

S. Engblom, M. Do-Quang, G. Amberg and A.-K. Tornberg, On diffuse interface modeling and simulation of surfactants in two-phase fluid flow. Commun. Comput. Phys. 14 (2013) 879–915. | DOI | Zbl

S. Ganesan and L. Tobiska, A coupled arbitrary Lagrangian–Eulerian and Lagrangian method for computation of free surface flows with insoluble surfactants. J. Comput. Phys. 228 (2009) 2859–2873. | DOI | Zbl

H. Garcke, K.F. Lam and B. Stinner, Diffuse interface modelling of soluble surfactants in two-phase flow. Commun. Math. Sci. 12 (2014) 1475–1522. | DOI | Zbl

H. Garcke and S. Wieland, Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system. SIAM J. Math. Anal. 37 (2006) 2025–2048. | DOI | Zbl

V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes. Springer-Verlag, Berlin (1986).

S. Groß and A. Reusken, Numerical methods for two-phase incompressible flows. Vol. 40 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (2011). | Zbl

S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan and L. Tobiska, Quantitative benchmark computations of two-dimensional bubble dynamics. Internat. J. Numer. Methods Fluids 60 (2009) 1259–1288. | DOI | Zbl

A.J. James and J. Lowengrub, A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201 (2004) 685–722. | DOI | Zbl

S. Khatri and A.-K. Tornberg, A numerical method for two phase flows with insoluble surfactants. Comput. Fluids 49 (2011) 150–165. | DOI | Zbl

M.-C. Lai, Y.-H. Tseng and H. Huang, An immersed boundary method for interfacial flows with insoluble surfactant. J. Comput. Phys. 227 (2008) 7279–7293. | DOI | Zbl

M. Muradoglu and G. Tryggvason, A front-tracking method for computation of interfacial flows with soluble surfactants. J. Comput. Phys. 227 (2008) 2238–2262. | DOI | Zbl

C. Pozrikidis, A finite-element method for interfacial surfactant transport, with application to the flow-induced deformation of a viscous drop. J. Eng. Math. 49 (2004) 163–180. | DOI | Zbl

Y.Y. Renardy, M. Renardy and V. Cristini, A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio. Eur. J. Mech. B Fluids 21 (2002) 49–59. | DOI | Zbl

A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA. Vol. 42 of Lect. Notes Comput. Sci. Eng. Springer-Verlag, Berlin (2005). | Zbl

K.E. Teigen, X. Li, J. Lowengrub, F. Wang and A. Voigt, A diffuse-interface approach for modeling transport, diffusion and adsorption/desorption of material quantities on a deformable interface. Commun. Math. Sci. 7 (2009) 1009–1037. | DOI | Zbl

K.E. Teigen and S.T. Munkejord, Influence of surfactant on drop deformation in an electric field. Phys. Fluids 22 (2010) 112104. | DOI

J.-J. Xu, Y. Huang, M.-C. Lai and Z. Li, A coupled immersed interface and level set method for three-dimensional interfacial flows with insoluble surfactant. Commun. Comput. Phys. 15 (2014) 451–469. | DOI | Zbl

J.-J. Xu, Z. Li, J. Lowengrub and H. Zhao, A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212 (2006) 590–616. | DOI | Zbl

J.-J. Xu, Y. Yang and J. Lowengrub, A level-set continuum method for two-phase flows with insoluble surfactant. J. Comput. Phys. 231 (2012) 5897–5909. | DOI

X. Yang and A.J. James, An arbitrary Lagrangian–Eulerian (ALE) method for interfacial flows with insoluble surfactants. FDMP Fluid Dyn. Mater. Process. 3 (2007) 65–95. | Zbl

Cité par Sources :