A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 503-528.

In a previous paper [F. Chouly, P. Hild and Y. Renard, A Nitsche finite element method for dynamic contact. 1. Space semi-discretization and time-marching schemes. ESAIM: M2AN 49 (2015) 481–502.], we adapted Nitsche’s method to the approximation of the linear elastodynamic unilateral contact problem. The space semi-discrete problem was analyzed and some schemes (θ-scheme, Newmark and a new hybrid scheme) were proposed and proved to be well-posed under appropriate CFL conditions. In the present paper we look at the stability properties of the above-mentioned schemes and we proceed to the corresponding numerical experiments. In particular we prove and illustrate numerically some interesting stability and (almost) energy conservation properties of Nitsche’s semi-discretization combined to the new hybrid scheme.

Reçu le :
DOI : 10.1051/m2an/2014046
Classification : 65N12, 65N30, 74M15
Mots clés : Unilateral contact, elastodynamics, Nitsche’s method, time-marching schemes, stability
Chouly, Franz 1 ; Hild, Patrick 2 ; Renard, Yves 3

1 Laboratoire de Mathématiques de Besançon – UMR CNRS 6623, Université de Franche Comté, 16 route de Gray, 25030 Besançon cedex, France
2 Institut de Mathématiques de Toulouse - UMR CNRS 5219, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 9, France
3 Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, 69621 Villeurbanne, France
@article{M2AN_2015__49_2_503_0,
     author = {Chouly, Franz and Hild, Patrick and Renard, Yves},
     title = {A {Nitsche} finite element method for dynamic contact: 2. {Stability} of the schemes and numerical experiments},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {503--528},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {2},
     year = {2015},
     doi = {10.1051/m2an/2014046},
     zbl = {1311.74114},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014046/}
}
TY  - JOUR
AU  - Chouly, Franz
AU  - Hild, Patrick
AU  - Renard, Yves
TI  - A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 503
EP  - 528
VL  - 49
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014046/
DO  - 10.1051/m2an/2014046
LA  - en
ID  - M2AN_2015__49_2_503_0
ER  - 
%0 Journal Article
%A Chouly, Franz
%A Hild, Patrick
%A Renard, Yves
%T A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 503-528
%V 49
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014046/
%R 10.1051/m2an/2014046
%G en
%F M2AN_2015__49_2_503_0
Chouly, Franz; Hild, Patrick; Renard, Yves. A Nitsche finite element method for dynamic contact: 2. Stability of the schemes and numerical experiments. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 2, pp. 503-528. doi : 10.1051/m2an/2014046. http://archive.numdam.org/articles/10.1051/m2an/2014046/

R.A. Adams, Sobolev spaces. Vol. 65 of Pure Appl. Math. Academic Press, New York, London (1975). | Zbl

F. Armero and E. Petöcz, Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput. Methods Appl. Mech. Engrg. 158 (1998) 269–300. | DOI | Zbl

Y. Ayyad, M. Barboteu and J.R. Fernández, A frictionless viscoelastodynamic contact problem with energy consistent properties: numerical analysis and computational aspects. Comput. Methods Appl. Mech. Engrg. 198 (2009) 669–679. | DOI | Zbl

N.J. Carpenter, R.L. Taylor and M.G. Katona, Lagrange constraints for transient finite element surface contact. Int. J. Numer. Methods Engrg. 32 (1991) 103–128. | DOI | Zbl

F. Chouly, P. Hild and Y. Renard, A Nitsche finite element method for dynamic contact. 1. Space semi-discretization and time-marching schemes. ESAIM: M2AN 49 (2015) 481–502. | DOI | Numdam | Zbl

P.G. Ciarlet, Handbook of Numerical Analysis, The finite element method for elliptic problems. Edited by P.G. Ciarlet and J.L. Lions, vol. II, Chap. 1. North Holland (1991) 17–352. | Zbl

F. Dabaghi, A. Petrov, J. Pousin and Y. Renard, Numerical approximation of a one dimensional elastodynamic contact problem based on mass redistribution method. Submitted (2013). Available at . | HAL

F. Dabaghi, A. Petrov, J. Pousin and Y. Renard, Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary. ESAIM: M2AN 48 (2014) 1147–1169. | DOI | Numdam | Zbl

P. Deuflhard, R. Krause and S. Ertel, A contact-stabilized Newmark method for dynamical contact problems. Int. J. Numer. Methods Engrg. 73 (2008) 1274–1290. | DOI | Zbl

D. Doyen, A. Ern and S. Piperno, Time-integration schemes for the finite element dynamic Signorini problem. SIAM J. Sci. Comput. 33 (2011) 223–249. | DOI | Zbl

Y. Dumont and L. Paoli, Vibrations of a beam between obstacles. Convergence of a fully discretized approximation. ESAIM: M2AN 40 (2006) 705–734. | DOI | Numdam | Zbl

A. Ern and J.-L. Guermond, Theory and practice of finite elements. In vol. 159 of Appl. Math. Sci. Springer-Verlag, New York (2004). | Zbl

O. Gonzalez, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Methods Appl. Mech. Engrg. 190 (2000) 1763–1783. | DOI | Zbl

C. Hager, S. Hüeber and B.I. Wohlmuth, A stable energy-conserving approach for frictional contact problems based on quadrature formulas. Int. J. Numer. Methods Engrg. 73 (2008) 205–225. | DOI | Zbl

P. Hauret, Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact. Comput. Methods Appl. Mech. Engrg. 199 (2010) 2941–2957. | DOI | Zbl

P. Hauret and P. Le Tallec, Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Methods Appl. Mech. Engrg. 195 (2006) 4890–4916. | DOI | MR | Zbl

C. Kane, E.A. Repetto, M. Ortiz and J.E. Marsden, Finite element analysis of nonsmooth contact. Comput. Methods Appl. Mech. Engrg. 180 (1999) 1–26. | DOI | MR | Zbl

H.B. Khenous, Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. Ph.D. thesis, INSA de Toulouse (2005).

H.B. Khenous, P. Laborde and Y. Renard, Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A Solids 27 (2008) 918–932. | DOI | MR | Zbl

R. Krause and M. Walloth, Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme. Appl. Numer. Math. 62 (2012) 1393–1410. | DOI | MR | Zbl

T.A. Laursen and V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Int. J. Numer. Methods Engrg. 40 (1997) 863–886. | DOI | MR | Zbl

T.A. Laursen and G.R. Love, Improved implicit integrators for transient impact problems – geometric admissibility within the conserving framework. Int. J. Numer. Methods Engrg. 53 (2002) 245–274. | DOI | MR | Zbl

L. Paoli, Time discretization of vibro-impact. R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 359 (2001) 2405–2428. | DOI | MR | Zbl

L. Paoli and M. Schatzman, A numerical scheme for impact problems. I. The one-dimensional case. SIAM J. Numer. Anal. 40 (2002) 702–733. | DOI | MR | Zbl

L. Paoli and M. Schatzman, A numerical scheme for impact problems. II. The multidimensional case. SIAM J. Numer. Anal. 40 (2002) 734–768. | DOI | MR | Zbl

Y. Renard, The singular dynamic method for constrained second order hyperbolic equations: application to dynamic contact problems. J. Comput. Appl. Math. 234 (2010) 906–923. | DOI | MR | Zbl

Y. Renard, Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity. Comput. Meth. Appl. Mech. Engrg. 256 (2013) 38–55. | DOI | MR | Zbl

B. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta Numerica (2011) 569–734. | MR | Zbl

P. Wriggers, Computational Contact Mechanics. Wiley (2002).

Cité par Sources :