Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 755-785.

This paper investigates the augmented plane wave methods which are widely used in full-potential electronic structure calculations. These methods introduce basis functions that describe different regions using different discretization schemes. We construct a nonconforming method based on this idea and present an a priori error analysis for both linear Schrödinger type equations and nonlinear Kohn−Sham equations. Some numerical experiments are presented to support our theory.

Reçu le :
DOI : 10.1051/m2an/2014052
Classification : 65N15, 65N25, 35P30, 81Q05
Mots clés : Kohn−Sham density functional theory, augmented plane wave methods, nonconforming, a priori error estimate.Financial support from the Alexander von Humboldt Foundation under grant CHN 1138663 STP
Chen, Huajie 1 ; Schneider, Reinhold 1

1 Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany.
@article{M2AN_2015__49_3_755_0,
     author = {Chen, Huajie and Schneider, Reinhold},
     title = {Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {755--785},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {3},
     year = {2015},
     doi = {10.1051/m2an/2014052},
     zbl = {1330.65170},
     mrnumber = {3342227},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014052/}
}
TY  - JOUR
AU  - Chen, Huajie
AU  - Schneider, Reinhold
TI  - Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 755
EP  - 785
VL  - 49
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014052/
DO  - 10.1051/m2an/2014052
LA  - en
ID  - M2AN_2015__49_3_755_0
ER  - 
%0 Journal Article
%A Chen, Huajie
%A Schneider, Reinhold
%T Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 755-785
%V 49
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014052/
%R 10.1051/m2an/2014052
%G en
%F M2AN_2015__49_3_755_0
Chen, Huajie; Schneider, Reinhold. Numerical analysis of augmented plane wave methods for full-potential electronic structure calculations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 755-785. doi : 10.1051/m2an/2014052. http://archive.numdam.org/articles/10.1051/m2an/2014052/

A. Anantharaman and E. Cancès, Existence of minimizers for Kohn−Sham models in quantum chemistry, Ann. Inst. Henri Poincaré Anal. Non Lin. 26 (2009) 2425–2455. | DOI | Numdam | MR | Zbl

O.K. Andersen, Simple approach to the band structure problem. Solid State Commun. 13 (1973) 133–136. | DOI

O.K. Andersen, Linear methods in band theory. Phys. Rev. B 12 (1975) 3060–3083. | DOI

O.K. Andersen and R.V. Kasowski, Electronic states as linear combinations of muffin-tin orbitals. Phys. Rev. B 4 (1971) 1064–1069. | DOI

I. Babuška and J. Osborn, Eigenvalue Problems, in Finite Element Methods (Part 1). Handb. Numer. Anal. Edited by P.G. Ciarlet and J.L. Lions. In vol. 2. Elsevier Science Publishers, North-Holand (1991) 640–787. | MR | Zbl

I. Babuška and M. Rosenzweig, A finite element scheme for domains with corners. Numer. Math. 20 (1972) 1–21. | DOI | MR | Zbl

M. Bachmayr, H. Chen and R. Schneider, Error estimates for Hermite and even-tempered Gaussian approximations in quantum chemistry. Numer. Math. 128 (2014) 137–165. | DOI | MR | Zbl

F.B. Belgacem, The Mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. | DOI | MR | Zbl

C. Bernardi, N. Débit and Y. Maday, Coupling finite element and spectral methods: first results. Math. Comput. 54 (1990) 21–29. | DOI | MR | Zbl

C. Bernardi, Y. Maday and A.T. Patera, A new non conforming approach to domain decomposition: The Mortar element method, In Collège de France Seminar, edited by H. Brezis and J.L. Lions, Pitman (1990). | Zbl

S.C. Brenner and L.R. Scott, Mathematical Theory of Finite Element Methods. Springer (2002). | MR | Zbl

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). | MR | Zbl

E. Cancès, R. Chakir and Y. Maday, Numerical analysis of the planewave discretization of some orbital-free and Kohn−Sham models. ESAIM: M2AN 46 (2012) 341–388. | DOI | Numdam | MR | Zbl

C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods for Fluid Dynamics. Springer-Verlag (1988). | MR | Zbl

H. Chen and R. Schneider, DG methods using radial bases functions and plane waves for full-potential electronic structure calculations, preprint.

H. Chen, X. Gong, L. He, Z. Yang and A. Zhou, Numerical analysis of finite dimensional approximations of Kohn−Sham models. Adv. Comput. Math. 38 (2013) 225–256. | DOI | MR | Zbl

M. Crouzeix and P.A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Francaise Automat. Informat. Recherch Operationelle Sér. Anal. Numér. 7 (1973) 33–75. | Numdam | MR | Zbl

A. Edelman, T.A. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998) 303–353. | DOI | MR | Zbl

Y.V. Egorov and B.W. Schulze, Pseudo-differential Operators, Singularities, Applications. Birkhäuser, Basel (1997). | MR | Zbl

H. Ehrenreich, F. Seitz and D. Turnbull, Solid State Physics. Edited by H. Ehrenreich, F. Seitz and D. Turnbull, New York, London (1971).

H.J. Flad, R. Schneider and B.W. Schulze, Asymptotic regularity of solutions to Hartree-Fock equations with Coulomb potential. Math. Meth. Appl. Sci. 31 (2008) 2172–2201. | DOI | MR | Zbl

S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, The electron density is smooth away from the nuclei. Commun. Math. Phys. 228 (2002) 401–415. | DOI | MR | Zbl

S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Analyticity of the density of electronic wavefunctions. Arkiv för Matematik 42 (2004) 87–106. | DOI | MR | Zbl

S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Non-isotropic cusp conditions and regularity of the electron density of molecules at the nuclei. Ann. Henri Poincaré 8 (2007) 731–748. | DOI | MR | Zbl

X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.Y. Raty and D.C. Allan, First-principles computation of material properties: the ABINIT software project. Comput. Mater. Sci. 25 (2002) 478–492. | DOI

P. Grisvard, Singularities in boundary value problems. In vol. 22 of Research Appl. Math. Masson, Paris (1992). | MR | Zbl

M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Electron wavefunctions and densities for atoms. Ann. Henri Poincaré 2 (2001) 77–100. | DOI | MR | Zbl

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. B 136 (1964) 864–871. | DOI | MR

E. Hunsicker, V. Nistor and J.O. Sofo, Analysis of periodic Schrödinger operators: Regularity and approximation of eigenfunctions. J. Math. Phys. 49 (2008) 08350101–08350121. | DOI | MR | Zbl

B.M. Irons and A. Razzaque, Experience with the patch test for convergence of finite elements, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part II. Edited by A.K. Aziz. Academic Press, New York (1972) 557–587. | MR | Zbl

D.D. Koelling and G.O. Arbman, Use of energy derivative of the radial solution in an augmented plane wave method: application to copper. J. Phys. F: Metal Phys. 5 (1975) 2041–2054. | DOI

W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140 (1965) 1133–1138. | DOI | MR

E.E. Krasovskii, V.V. Nemoshkalenko and V.N. Antonov, On the accuracy of the wavefunctions calculated by LAPW method. I. Phys. B 91 (1993) 463–366.

B. Langwallner, C. Ortner and E. Süli, Existence and convergence results for the Galerkin approximation of an electronic density functional. Math. Models Methods Appl. Sci. 20 (2010) 2237–2265. | DOI | MR | Zbl

C. Le Bris, Quelques problèmes mathématiques en chimie quanntique moléculaire. Ph.D. thesis, Ècole Polytechnique (1993).

P. Lesaint, On the convergence of Wilson’s nonconforming element for solving the elastic problems. Comput. Methods Appl. Mech. Engrg. 7 (1976) 1–16. | DOI | MR | Zbl

Y. Maday and G. Turinici, Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations. Numer. Math. 94 (2000) 739–770. | DOI | MR | Zbl

G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt and L. Nordström, Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64 (2001) 1951341–1951349.

R.M. Martin, Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press (2005). | Zbl

A. Messiah, Quantum Mechanics, vol. I. Wiley, New York (1964). | Zbl

J.E. Osborn, Spectral approximation for compact operators. Math. Comput. 29 (1975) 712–725. | DOI | MR | Zbl

P.A. Raviart and J.M. Thomas, Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comput. 31 (1977) 391–413. | DOI | MR | Zbl

R. Schneider, T. Rohwedder, A. Neelov and J. Blauert, Direct minimization for calculating invariant subspaces in density functional computations of the electronic structure. J. Comput. Math. 27 (2009) 360–387. | MR | Zbl

K. Schwarz, P. Blaha and G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences Comput. Phys. Commun. 147 (2002) 71–76. | DOI | Zbl

D.J. Singh and L. Nordstrom, Planewaves, Pseudopotentials, and the LAPW Method. Springer-Berlin (2006).

E. Sjöstedt, L. Nordström and D.J. Singh, An alternative way of linearizing the APW method. Solid State Commun. 114 (2000) 15–20. | DOI

J.C. Slater, Wave functions in a periodic potential. Phys. Rev. 51 (1937) 846–851. | DOI | JFM | Zbl

G. Strang. Variational crimes in the finite element methods, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part II. Edited by A.K. Aziz. Academic Press, New York (1972) 689–710. | MR | Zbl

P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya and M. Ortiz, Non-periodic finite-element formulation of Kohn−Sham density functional theory. J. Mech. Phys. Solid. 58 (2010) 256–280. | DOI | MR | Zbl

E.P. Wigner and F. Seitz, On the constitution of metallic sodium. Phys. Rev. 43 (1933) 804–810. | DOI | Zbl

E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-Point Theorems, translated from the German by P.R. Wadsack. Springer-Verlag (1986). | MR | Zbl

ABINIT, http://www.abinit.org/

FLEUR: The Jülich FLAPW code family, http://www.flapw.de/pm/.

The exciting Code, http://exciting-code.org/.

WIEN2k, http://www.wien2k.at/.

Cité par Sources :