Reduced basis techniques for nonlinear conservation laws
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 787-814.

In this paper we present a new reduced basis technique for parametrized nonlinear scalar conservation laws in presence of shocks. The essential ingredients are an efficient algorithm to approximate the shock curve, a procedure to detect the smooth components of the solution at the two sides of the shock, and a suitable interpolation strategy to reconstruct such smooth components during the online stage. The approach we propose is based on some theoretical properties of the solution to the problem. Some numerical examples prove the effectiveness of the proposed strategy.

Reçu le :
DOI : 10.1051/m2an/2014054
Classification : 65M08, 65M15, 65M25, 35L65, 35L67
Mots clés : Nonlinear conservation laws, model reduction, reduced basis method
Taddei, T. 1 ; Perotto, S. 2 ; Quarteroni, A. 2, 3

1 Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Rm. 3-237 Cambridge, MA 02139, USA.
2 MOX-Modeling and Scientific Computing, Dipartimento di Matematica “F. Brioschi”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
3 Modelling and Scientific Computing, Institute of Analysis and Scientific Computing, École Polytechnique Féderale de Lausanne, Station 8, EPFL, 1015 Lausanne, Switzerland.
@article{M2AN_2015__49_3_787_0,
     author = {Taddei, T. and Perotto, S. and Quarteroni, A.},
     title = {Reduced basis techniques for nonlinear conservation laws},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {787--814},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {3},
     year = {2015},
     doi = {10.1051/m2an/2014054},
     zbl = {1316.65079},
     mrnumber = {3342228},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014054/}
}
TY  - JOUR
AU  - Taddei, T.
AU  - Perotto, S.
AU  - Quarteroni, A.
TI  - Reduced basis techniques for nonlinear conservation laws
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 787
EP  - 814
VL  - 49
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014054/
DO  - 10.1051/m2an/2014054
LA  - en
ID  - M2AN_2015__49_3_787_0
ER  - 
%0 Journal Article
%A Taddei, T.
%A Perotto, S.
%A Quarteroni, A.
%T Reduced basis techniques for nonlinear conservation laws
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 787-814
%V 49
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014054/
%R 10.1051/m2an/2014054
%G en
%F M2AN_2015__49_3_787_0
Taddei, T.; Perotto, S.; Quarteroni, A. Reduced basis techniques for nonlinear conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 787-814. doi : 10.1051/m2an/2014054. http://archive.numdam.org/articles/10.1051/m2an/2014054/

L. Ambrosio and C. De Lellis, A note on admissible solutions of 1d scalar conservation laws and 2d Hamilton–Jacobi equations. J. Hyperbol. Differ. Eq. 31 (2004) 813–826. | DOI | MR | Zbl

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. Oxford Univ. Press, Oxford (2000). | MR | Zbl

C. Bardos, A.L. Roux and J. Nedélec, First order quasilinear equations with boundary conditions. Commun. Part Differ. Eq. 4 (1979) 1017–1034. | DOI | MR | Zbl

M. Barrault, Y. Maday, N. Nguyen and A. Patera, An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667–672. | DOI | MR | Zbl

F. Bouchut and B. Perthame, Kruzkov’s estimates for scalar conservation laws revisited. Trans. Amer. Math. Soc. 350 (1998) 2847–2870. | DOI | MR | Zbl

A. Bressan, Hyperbolic Systems of Conservation Laws-The One-Dimensional Cauchy Problem. Oxford Univ. Press, Oxford (2000). | MR | Zbl

K. Carlberg, C. Farhat, J. Cortial and D. Amsallem, The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows. J. Comput. Phys. 242 (2013) 623–647. | DOI | MR | Zbl

B. Cockburn and G. Gripenberg, Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations. J. Differ. Eq. 151 (1999) 231–251. | DOI | MR | Zbl

M. Drohmann, B. Haasdonk and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34 (2012) A937–A969. | DOI | MR | Zbl

L. Evans, Partial Differential Equations. In vol. 19 of Grad. Stud. Math. 2nd edition. American Mathematical Society, Providence (2010). | MR | Zbl

R. Fox and H. Miura, An approximate analysis technique for design calculations. AIAA J. 9 (1971) 177–179. | DOI

M. Garavello and B. Piccoli, Traffic Flow on Networks – Conservation Laws Models. Vol. 1. American Institute of Mathematical Sciences, New York (2006). | MR | Zbl

J.F. Gerbeau and D. Lombardi, Approximated Lax Pairs for the reduced order integration of nonlinear evolution equations. Technical report, INRIA Paris-Rocquencourt (2014). Preprint ArXiv:1401.4829. | MR

L. Gosse and C. Makridakis, Two a posteriori error estimates for one-dimensional scalar conservation laws. SIAM J. Numer. Anal. 38 (2000) 964–988. | DOI | MR | Zbl

M. Gunzburger, J. Peterson and J. Shadid, Reduced order modeling of time-dependent PDEs with multiple parameters in the boundary data. Comput. Methods Appl. Mech. 196 (2007) 1030–1047. | DOI | MR | Zbl

B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized evolution equations. Math. Model. Numer. Anal. 42 (2008) 277–302. | DOI | Numdam | MR | Zbl

D.B.P. Huynh, D.J. Knezevic and A.T. Patera, A static condensation reduced basis element method: approximation and a posteriori error estimation. ESAIM: M2AN 47 (2013) 213–251. | DOI | Numdam | MR | Zbl

L. Iapichino, A. Quarteroni and G. Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Method Appl. Mech. 221–222 (2012) 63–82. | DOI | MR | Zbl

R. LeVeque, Numerical Methods for Conservation Laws. Birkhauser Verlag, Berlin (1992). | MR | Zbl

R. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002). | MR | Zbl

A. Lóvgren, Y. Maday and E. Rónquist, The reduced basis element method: application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2004) 240–258. | DOI | MR | Zbl

A. Lóvgren, Y. Maday and E. Rónquist, A reduced basis element method for the steady Stokes problem. ESAIM: M2AN 40 (2006) 529–552. | DOI | Numdam | MR | Zbl

A. Manzoni, A. Quarteroni and G. Rozza, Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Indian 1 (2011) 1–44. | MR | Zbl

MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts (2010).

A. Noor, Recent advances in reduction methods for non-linear problems. Comput. Struct. 13 (1981) 31–44. | DOI | MR | Zbl

M. Ohlberger and S. Rave, Nonlinear reduced basis approximation of parametrized evolution equations via the method of freezing. C. R. Math. Acad. Sci. Paris, Série I 348 (2013) 901–906. | DOI | MR | Zbl

A. Patera and G. Rozza, Reduced Basis Approximation and a posteriori Error Estimation for Parametrized Partial Differential Equations. To appear in MIT Pappalardo Graduate Monographs in Mechanical Engineering. Massachusetts Institute of Technology (2009).

T. Porsching, Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comput. 45 (1985) 487–496. | DOI | MR | Zbl

A. Quarteroni, L. Sacco and F. Saleri, Numerical Mathematics. In vol. 37 of Texts Appl. Math. 1st edition. Springer (2007). | MR | Zbl

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, 2nd edition. Springer-Verlag, Berlin, Heidelberg (1994). | MR | Zbl

G. Rozza, D. Huynh and A. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Meth. Eng. 15 (2008) 229–275. | DOI | MR | Zbl

W. Rudin, Real and Complex Analysis, 2nd edition. Mc-Graw-Hill, New York (1974). | MR | Zbl

T. Bui-Thanh, M. Damodaran and K. Willcox, Proper Orthogonal Decomposition extensions for parametric applications in transonic aerodynamics. In Proc. of 16th AIAA Comput. Fluid Dynamics (2003).

Cité par Sources :