High order numerical methods for highly oscillatory problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 695-711.

This paper is concerned with the numerical solution of nonlinear Hamiltonian highly oscillatory systems of second-order differential equations of a special form. We present numerical methods of high asymptotic as well as time stepping order based on the modulated Fourier expansion of the exact solution. In particular we obtain time stepping orders higher than 2 with only a finite energy assumption on the initial values of the problem. In addition, the stepsize of these new numerical integrators is not restricted by the high frequency of the problem. Furthermore, numerical experiments on the modified Fermi–Pasta–Ulam problem as well as on a one dimensional model of a diatomic gas with short-range interaction forces support our investigations.

Reçu le :
DOI : 10.1051/m2an/2014056
Classification : 34E05, 34E13, 65L20, 65P10
Mots-clés : Highly oscillatory differential equations, multiple time scales, Fermi–Pasta–Ulam problem, modulated Fourier expansions, high order numerical schemes, adiabatic invariants
Cohen, David 1 ; Schweitzer, Julia 2

1 Matematik och matematisk statistik, Umeå universitet, 90187 Umeå, Sweden.
2 Institut für Angewandte und Numerische Mathematik, Karlsruher Institut für Technologie, 76128 Karlsruhe, Germany.
@article{M2AN_2015__49_3_695_0,
     author = {Cohen, David and Schweitzer, Julia},
     title = {High order numerical methods for highly oscillatory problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {695--711},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {3},
     year = {2015},
     doi = {10.1051/m2an/2014056},
     zbl = {1317.34137},
     mrnumber = {3342224},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014056/}
}
TY  - JOUR
AU  - Cohen, David
AU  - Schweitzer, Julia
TI  - High order numerical methods for highly oscillatory problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 695
EP  - 711
VL  - 49
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014056/
DO  - 10.1051/m2an/2014056
LA  - en
ID  - M2AN_2015__49_3_695_0
ER  - 
%0 Journal Article
%A Cohen, David
%A Schweitzer, Julia
%T High order numerical methods for highly oscillatory problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 695-711
%V 49
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014056/
%R 10.1051/m2an/2014056
%G en
%F M2AN_2015__49_3_695_0
Cohen, David; Schweitzer, Julia. High order numerical methods for highly oscillatory problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 695-711. doi : 10.1051/m2an/2014056. http://archive.numdam.org/articles/10.1051/m2an/2014056/

W. Bao, X. Dong and X. Zhao, Uniformly accurate multiscale time integrators for highly oscillatory second order differential equations. J. Math. Study 47 (2014) 111–150. | DOI | MR | Zbl

G. Benettin, L. Galgani and A. Giorgilli, The dynamical foundations of classical statistical mechanics and the Boltzmann-Jeans conjecture. In Seminar on Dynamical Systems (St. Petersburg, 1991). Vol. 12 of Progr. Nonlin. Differ. Eq. Appl. Birkhäuser, Basel (1994) 3–14. | MR | Zbl

F. Castella, P. Chartier and E. Faou, An averaging technique for highly oscillatory Hamiltonian problems. SIAM J. Numer. Anal. 47 (2009) 2808–2837. | DOI | MR | Zbl

P. Chartier, A. Murua and J.M. Sanz-Serna, Higher-order averaging, formal series and numerical integration I: B-series. Found. Comput. Math. 10 (2010) 695–727. | DOI | MR | Zbl

D. Cohen, Analysis and Numerical Treatment of Highly Oscillatory Differential Equations. Ph.D thesis, University of Geneva (2004). | Zbl

D. Cohen, E. Hairer and Ch. Lubich, Modulated Fourier expansions of highly oscillatory differential equations. Found. Comput. Math. 3 (2003) 327–345. | DOI | MR | Zbl

D. Cohen, E. Hairer and Ch. Lubich, Numerical energy conservation for multi-frequency oscillatory differential equations. BIT 45 (2005) 287–305. | DOI | MR | Zbl

D. Cohen, T. Jahnke, K. Lorenz and Ch. Lubich, Numerical integrators for highly oscillatory Hamiltonian systems: a review. In Analysis, modeling and simulation of multiscale problems. Springer, Berlin (2006) 553–576. | MR

M. Condon, A. Deaño and A. Iserles, On second-order differential equations with highly oscillatory forcing terms. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466 (2010) 1809–1828. | MR | Zbl

M. Condon, A. Deaño and A. Iserles, On systems of differential equations with extrinsic oscillation. Discrete Contin. Dyn. Syst. 28 (2010) 1345–1367. | DOI | MR | Zbl

M. Condon, A. Deaño and A. Iserles, Asymptotic solvers for oscillatory systems of differential equations. Se MA J. (2011) 79–101. | MR | Zbl

E. Faou and K. Schratz, Asymptotic preserving schemes for the Klein–Gordon equation in the non-relativistic limit regime. Numerische Mathematik 126 (2013) 441–469. | DOI | MR | Zbl

L. Gauckler, Long-time analysis of Hamiltonian partial differential equations and their discretizations. PhD. thesis, Universität Tübingen (2010). http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-47540.

V. Grimm and M. Hochbruck, Error analysis of exponential integrators for oscillatory second-order differential equations. J. Phys. A 39 (2006) 5495–5507. | DOI | MR | Zbl

E. Hairer and Ch. Lubich, Long-time energy conservation of numerical methods for oscillatory differential equations. SIAM J. Numer. Anal. 38 (electronic) (2000) 414–441. | DOI | MR | Zbl

E. Hairer, Ch. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Vol. 31 of Springer Ser. Comput. Math. Springer, Berlin (2002). | MR | Zbl

M. Hochbruck and Ch. Lubich, A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83 (1999) 403–426. | DOI | MR | Zbl

M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numerica 19 (2010) 209–286. | DOI | MR | Zbl

C. Le Bris and F. Legoll, Integrators for highly oscillatory Hamiltonian systems: an homogenization approach. Discrete Contin. Dyn. Syst. Ser. B 13 (2010) 347–373. | MR | Zbl

R.I. Mclachlan and A. Stern, Modified trigonometric integrators. SIAM J. Numer. Anal. 52 (2014) 1378–1397. | DOI | MR | Zbl

A. Stern and E. Grinspun, Implicit-explicit variational integration of highly oscillatory problems. Multiscale Model. Simul. 7 (2009) 1779–1794. | DOI | MR | Zbl

M. Tao, H. Owhadi and J.E. Marsden, Nonintrusive and structure preserving multiscale integration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul. 8 (2010) 1269–1324. | DOI | MR | Zbl

B. Wang and X. Wu, A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376 (2012) 1185–1190. | DOI | MR | Zbl

Cité par Sources :