An a posteriori error estimation for the discrete duality finite volume discretization of the Stokes equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 663-693.

We derive an a posteriori error estimation for the discrete duality finite volume (DDFV) discretization of the stationary Stokes equations on very general twodimensional meshes, when a penalty term is added in the incompressibility equation to stabilize the variational formulation. Two different estimators are provided: one for the error on the velocity and one for the error on the pressure. They both include a contribution related to the error due to the stabilization of the scheme, and a contribution due to the discretization itself. The estimators are globally upper as well as locally lower bounds for the errors of the DDFV discretization. They are fully computable as soon as a lower bound for the inf-sup constant is available. Numerical experiments illustrate the theoretical results and we especially consider the influence of the penalty parameter on the error for a fixed mesh and also of the mesh size for a fixed value of the penalty parameter. A global error reducing strategy that mixes the decrease of the penalty parameter and adaptive mesh refinement is described.

DOI : 10.1051/m2an/2014057
Classification : 65N08, 65N15, 76D07
Mots-clés : Finite volumes, discrete duality, a posteriori error estimation, Stokes equations, stabilization
Le, Anh Ha 1 ; Omnes, Pascal 1, 2

1 CEA, DEN, DM2S-STMF, 91191 Gif-sur-Yvette cedex, France.
2 Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS, UMR 7539, 99, Avenue J.-B. Clément 93430 Villetaneuse cedex, France.
@article{M2AN_2015__49_3_663_0,
     author = {Le, Anh Ha and Omnes, Pascal},
     title = {An a posteriori error estimation for the discrete duality finite volume discretization of the {Stokes} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {663--693},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {3},
     year = {2015},
     doi = {10.1051/m2an/2014057},
     zbl = {1321.76046},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014057/}
}
TY  - JOUR
AU  - Le, Anh Ha
AU  - Omnes, Pascal
TI  - An a posteriori error estimation for the discrete duality finite volume discretization of the Stokes equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 663
EP  - 693
VL  - 49
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014057/
DO  - 10.1051/m2an/2014057
LA  - en
ID  - M2AN_2015__49_3_663_0
ER  - 
%0 Journal Article
%A Le, Anh Ha
%A Omnes, Pascal
%T An a posteriori error estimation for the discrete duality finite volume discretization of the Stokes equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 663-693
%V 49
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014057/
%R 10.1051/m2an/2014057
%G en
%F M2AN_2015__49_3_663_0
Le, Anh Ha; Omnes, Pascal. An a posteriori error estimation for the discrete duality finite volume discretization of the Stokes equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 663-693. doi : 10.1051/m2an/2014057. http://archive.numdam.org/articles/10.1051/m2an/2014057/

B. Andreianov, M. Bendahmane, K.H. Karlsen and C. Pierre, Convergence of discrete duality finite volume schemes for the cardiac bidomain model. Netw. Heterogeneous Media 6 (2011) 195–240. | DOI | Zbl

B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23 (2007) 145–195. | DOI | Zbl

C. Bernardi, V. Girault and F. Hecht, A posteriori analysis of a penalty method and application to the Stokes problem. Math. Models Methods Appl. Sci. 13 (2003) 1599–1628. | DOI | Zbl

F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46 (2008) 3032–3070. | DOI | Zbl

C. Carstensen and S. Funken, Constants in Clément-interpolation error and residual based a posteriori estimates in finite element methods. East-West J. Numer. Math. 8 (2000) 153–175. | MR | Zbl

C. Chainais-Hillairet, Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models. Internat. J. Numer. Methods Fluids 59 (2009) 239–257. | DOI | MR | Zbl

E.V. Chizhonkov and M.A. Olshanskii, On the domain geometry dependence of the LBB condition. ESAIM: M2AN 34 (2000) 935–951. | DOI | Numdam | MR | Zbl

M. Dobrowolski, On the LBB condition in the numerical analysis of the Stokes equations. Appl. Numer. Math. 54 (2005) 314–323. | DOI | MR | Zbl

S. Zsuppán, On the domain dependence of the infsup and related constants via conformal mapping. J. Math. Anal. Appl. 382 (2011) 856–863. | DOI | MR | Zbl

Y. Coudière and F. Hubert, A 3D discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput. 33 (2011) 1739–1764. | DOI | MR | Zbl

Y. Coudière and G. Manzini, The discrete duality finite volume method for convection-diffusion problems. SIAM J. Numer. Anal. 47 (2010) 4163–4192. | DOI | MR | Zbl

Y. Coudière, C. Pierre, O. Rousseau and R. Turpault, A 2D/3D discrete duality finite volume scheme. Application to ECG simulation. Int. J. Finite 6 (2009), electronic only. | MR | Zbl

E. Dari, R. Durán, and C. Padra, Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64 (1995) 1017–1033. | DOI | MR | Zbl

S. Delcourte, Développement de méthodes de volumes finis pour la mécanique des fluides. Ph.D. thesis (in French), University of Toulouse III, France, 2007. Available at http://tel.archives-ouvertes.fr/tel-00200833/fr/

K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. | DOI | Numdam | MR | Zbl

S. Delcourte, K. Domelevo and P. Omnes, A discrete duality finite volume approach to Hodge decomposition and Div–Curl problems on almost arbitrary two–dimensional meshes. SIAM J. Numer. Anal. 45 (2007) 1142–1174. | DOI | MR | Zbl

S. Delcourte and P. Omnes, A discrete duality finite volume discretization of the vorticity-velocity-pressure stokes problem on almost arbitrary two-dimensional grids. Numer. Methods Partial Differ. Equ. | DOI | MR | Zbl

Y. Girault, and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo (1986). | MR | Zbl

A. Hannukainen, R. Stenberg, and M. Vohralík, A unified framework for a posteriori error estimation for the Stokes problem. Numer. Math. 122 (2012) 725–769. | DOI | MR | Zbl

F. Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160 (2000) 481–499. | DOI | MR | Zbl

F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192 (2003) 1939–1959. | DOI | MR | Zbl

F. Hermeline, S. Layouni and P. Omnes, A finite volume method for the approximation of Maxwell’s equations in two space dimensions on arbitrary meshes. J. Comput. Phys. 227 (2008) 9365–9388. | DOI | MR | Zbl

S. Krell, Stabilized DDFV schemes for stokes problem with variable viscosity on general 2D meshes. Numer. Methods Partial Differ. Equ. 27 (2011) 1666–1706. | DOI | MR | Zbl

S. Krell and G. Manzini, The discrete duality finite volume method for Stokes equations on three-dimensional polyhedral meshes. SIAM J. Numer. Anal. 50 (2012) 808–837. | DOI | MR | Zbl

P. Omnes, Y. Penel and Y. Rosenbaum, a posteriori error estimation for the discrete duality finite volume discretization of the Laplace equation. SIAM J. Numer. Anal. 47 (2009) 2782–2807. | DOI | MR | Zbl

L.E. Payne, and H.F. Weinberger, An optimal Poincaré inequality for convex domain. Arch. Rational Mech. Anal. 5 (1960) 286–292. | DOI | MR | Zbl

J.R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and delaunay triangulator, in Applied Computational Geometry: Towards Geometric Engineering, edited by M.C. Lin and D. Manocha. In vol. 1148 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (1996) 203–222. https://www.cs.cmu.edu/~quake/triangle.html

A. Veeser and R. Verfürth, Poincaré constants for finite element stars. IMA J. Numer. Anal. 32 (2012) 30–47. | DOI | MR | Zbl

R. Verfürth, A posteriori error estimation for the Stokes equations. Numer. Math. 55 (1989) 309–325. | DOI | MR | Zbl

R. Verfürth, A posteriori error estimation for the Stokes equations II non-conforming discretizations. Numer. Math. 60 (1991) 235–249. | DOI | MR | Zbl

R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Teubner–Wiley, Stuttgart (1996). | Zbl

R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. | DOI | Numdam | MR | Zbl

Cité par Sources :