An effective preconditioner for a PML system for electromagnetic scattering problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 839-854.

In this work we are concerned with an efficient numerical solution of a perfectly matched layer (PML) system for a Maxwell scattering problem. The PML system is discretized by the edge finite element method, resulting in a symmetric but indefinite complex algebraic system. When the real and imaginary parts are considered independently, the complex algebraic system can be further transformed into a real generalized saddle-point system with some special structure. Based on an crucial observation to its Schur complement, we construct a symmetric and positive definite block diagonal preconditioner for the saddle-point system. Numerical experiments are presented to demonstrate the effectiveness and robustness of the new preconditioner.

Reçu le :
DOI : 10.1051/m2an/2014058
Classification : 35Q60, 65E05, 78A45, 78M10
Mots-clés : Maxwell scattering problem, edge finite elements, PML equations, Schur complement-type preconditioner
Hu, Qiya 1 ; Liu, Chunmei 2 ; Shu, Shi 2 ; Zou, Jun 3

1 LSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P.R. China.
2 Department of Mathematics and Computational Science, Hunan University of Science and Engineering, Hunan, 425199, P.R. China.
3 School of Mathematics and Computational Science, Xiangtan University, Hunan, 411105, P.R. China.
@article{M2AN_2015__49_3_839_0,
     author = {Hu, Qiya and Liu, Chunmei and Shu, Shi and Zou, Jun},
     title = {An effective preconditioner for a {PML} system for electromagnetic scattering problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {839--854},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {3},
     year = {2015},
     doi = {10.1051/m2an/2014058},
     mrnumber = {3342230},
     zbl = {1318.35115},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2014058/}
}
TY  - JOUR
AU  - Hu, Qiya
AU  - Liu, Chunmei
AU  - Shu, Shi
AU  - Zou, Jun
TI  - An effective preconditioner for a PML system for electromagnetic scattering problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 839
EP  - 854
VL  - 49
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2014058/
DO  - 10.1051/m2an/2014058
LA  - en
ID  - M2AN_2015__49_3_839_0
ER  - 
%0 Journal Article
%A Hu, Qiya
%A Liu, Chunmei
%A Shu, Shi
%A Zou, Jun
%T An effective preconditioner for a PML system for electromagnetic scattering problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 839-854
%V 49
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2014058/
%R 10.1051/m2an/2014058
%G en
%F M2AN_2015__49_3_839_0
Hu, Qiya; Liu, Chunmei; Shu, Shi; Zou, Jun. An effective preconditioner for a PML system for electromagnetic scattering problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 3, pp. 839-854. doi : 10.1051/m2an/2014058. http://archive.numdam.org/articles/10.1051/m2an/2014058/

E. Bécache and P. Joly, On the analysis of Bérenger’s perfectly matched layers for Maxwell’s equations. ESAIM: M2AN 36 (2002) 87–119. | DOI | Numdam | MR | Zbl

J.-P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114 (1994) 185-200. | DOI | MR | Zbl

J.-P. Bérenger, Perfectly Matched Layer (PML) for Computational Electromagnetics. Vol. 2 of Synthesis Lectures on Computational Electromagnetics. Morgan Claypool (2007).

H. Banks and B. Browning, Time domain electromagnetic scattering using finite elements and perfectly matched layers. Comput. Methods. Appl. Mech. Eng. 194 (2005) 149–168. | DOI | MR | Zbl

G. Bao and H. Wu, Convergence analysis of the perfectly matched layer problems for time harmonic Maxwell’s equations. SIAM J. Numer. Anal. 43 (2005) 2121–2143. | DOI | MR | Zbl

Y. Botros and J. Volakis, Preconditioned generalized minimal residual iterative scheme for perfectly matched layer terminated applications. IEEE Microw. Guided Wave Letters 9 (1999) 45–47. | DOI

Y. Botros and J. Volakis, Perfectly matched layer termination for finite-element meshed: Implementation and application, Microwave. Optim. Tech. Lett. 23 (1999) 166–172. | DOI

J. Bramble and J. Pasciak, Analysis of a cartesian PML approximation to the three dimensional electromagnetic wave scattering problem, Int. J. Numer. Anal. Model. 9 (2012) 543–561. | MR | Zbl

J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time harmonic electromagnetic scattering problems. Math. Comput. 77 (2008) 673–698. | DOI | MR | Zbl

J. Chen, Z. Chen, T. Cui and L. Zhang, An Adaptive Finite Element Method for the Eddy Current Model with Circuit/Field Couplings, SIAM J. Sci. Comput. 32 (2010) 1020–1042. | DOI | MR | Zbl

Z. Chen, T. Cui and L. Zhang, An adaptive anisotropic perfectly matched layer method for 3-D time harmonic electromagnetic scattering problems, Numer. Math. 125 (2013) 639–677. | DOI | MR | Zbl

W. Chew and W. Weedon, A 3d perfectly matched medium for modified Maxwell’s equations with streched coordinates. Microwave Opt. Technol. Lett. 13 (1994) 599–604. | DOI

R. Hiptmair, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal. 36 (1998) 204–225. | DOI | MR | Zbl

R. Hiptmair and J. Xu, Nodal auxiliary spaces preconditions in H(curl) and H(div) spaces. SIAM J. Numer. Anal. 45 (2007) 2483–2509. | DOI | MR | Zbl

Q. Hu and J. Zou, Substructuring preconditioners for saddle-point problems arising from Maxwell’s equations in three dimensions. Math. Comput. 73 (2004) 35–61. | DOI | MR | Zbl

E. Post, Formal Structure of Electromagnetics: General Covariance and Electromagnetics. Dover (1997). | Zbl

Wonseok Shin and Shanhui Fan, Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J. Comput. Phys. 231 (2012) 3406–3431. | DOI | MR | Zbl

F. L. Teixeira and W. C. Chew, Differential forms, metrics, and the reflectionless absorption of electromagnetic waves. J. Electromagn. Waves Appl. 13 (1999) 665–686. | DOI | MR | Zbl

A. Toselli, Overlapping Schwarz methods for Maxwell’s equations in three dimensions. Numer. Math. 86 (2000) 733–752. | DOI | MR | Zbl

A. Toselli, O. Widlund and B. Wohlmuth, An iterative substructuring method for Maxwell’s equations in two dimensions. Math. Comput. 70 (2001) 935–947. | DOI | MR | Zbl

P. Tsuji, B. Engquist and L. Ying, A sweeping preconditioner for time-harmonic Maxwell’s equations with finite elements. J. Comput. Phys. 231 (2012) 3770–3783. | DOI | MR | Zbl

Cité par Sources :