An augmented mixed-primal finite element method for a coupled flow-transport problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1399-1427.

In this paper we analyze the coupling of a scalar nonlinear convection-diffusion problem with the Stokes equations where the viscosity depends on the distribution of the solution to the transport problem. An augmented variational approach for the fluid flow coupled with a primal formulation for the transport model is proposed. The resulting Galerkin scheme yields an augmented mixed-primal finite element method employing Raviart−Thomas spaces of order k for the Cauchy stress, and continuous piecewise polynomials of degree k+1 for the velocity and also for the scalar field. The classical Schauder and Brouwer fixed point theorems are utilized to establish existence of solution of the continuous and discrete formulations, respectively. In turn, suitable estimates arising from the connection between a regularity assumption and the Sobolev embedding and Rellich−Kondrachov compactness theorems, are also employed in the continuous analysis. Then, sufficiently small data allow us to prove uniqueness and to derive optimal a priori error estimates. Finally, we report a few numerical tests confirming the predicted rates of convergence, and illustrating the performance of a linearized method based on Newton−Raphson iterations; and we apply the proposed framework in the simulation of thermal convection and sedimentation-consolidation processes.

DOI : 10.1051/m2an/2015015
Classification : 65N30, 65N12, 76R05, 76D07, 65N15
Mots-clés : Stokes equations, nonlinear transport problem, augmented mixed-primal formulation, fixed point theory, thermal convection, sedimentation-consolidation process, finite element methods, a priori error analysis
Alvarez, Mario 1, 2 ; Gatica, Gabriel N. 2 ; Ruiz–Baier, Ricardo 3

1 Sección de Matemática, Sede Occidente, Universidad de Costa Rica, San Ramón de Alajuela, Costa Rica
2 CI2 MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
3 Institute of Earth Sciences, Géopolis UNIL-Mouline, University of Lausanne, 1015 Lausanne, Switzerland
@article{M2AN_2015__49_5_1399_0,
     author = {Alvarez, Mario and Gatica, Gabriel N. and Ruiz{\textendash}Baier, Ricardo},
     title = {An augmented mixed-primal finite element method for a coupled flow-transport problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1399--1427},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {5},
     year = {2015},
     doi = {10.1051/m2an/2015015},
     mrnumber = {3423229},
     zbl = {1329.76157},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/m2an/2015015/}
}
TY  - JOUR
AU  - Alvarez, Mario
AU  - Gatica, Gabriel N.
AU  - Ruiz–Baier, Ricardo
TI  - An augmented mixed-primal finite element method for a coupled flow-transport problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1399
EP  - 1427
VL  - 49
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/m2an/2015015/
DO  - 10.1051/m2an/2015015
LA  - en
ID  - M2AN_2015__49_5_1399_0
ER  - 
%0 Journal Article
%A Alvarez, Mario
%A Gatica, Gabriel N.
%A Ruiz–Baier, Ricardo
%T An augmented mixed-primal finite element method for a coupled flow-transport problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1399-1427
%V 49
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/m2an/2015015/
%R 10.1051/m2an/2015015
%G en
%F M2AN_2015__49_5_1399_0
Alvarez, Mario; Gatica, Gabriel N.; Ruiz–Baier, Ricardo. An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1399-1427. doi : 10.1051/m2an/2015015. https://www.numdam.org/articles/10.1051/m2an/2015015/

R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press. Elsevier Ltd (2003). | MR | Zbl

M. Alvarez, G.N. Gatica and R. Ruiz-Baier, Mixed-primal finite element approximation of a steady sedimentation-consolidation system. In preparation (2015). | MR

P.R. Amestoy, I.S. Duff and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Engrg. 184 (2000) 501–520. | DOI | Zbl

C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. | DOI | MR | Zbl

F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). | MR | Zbl

R. Bürger, R. Ruiz-Baier and H. Torres, A stabilized finite volume element formulation for sedimentation-consolidation processes. SIAM J. Sci. Comput. 34 (2012) B265–B289. | DOI | MR | Zbl

R. Bürger, W.L. Wendland and F. Concha, Model equations for gravitational sedimentation-consolidation processes. ZAMM Z. Angew. Math. Mech. 80 (2000) 79–92. | DOI | MR | Zbl

M.C. Bustos, F. Concha, R. Bürger and E.M. Tory, Sedimentation and Thickening. Kluwer Academic Publishers, Dordrecht (1999). | MR | Zbl

Z. Cai, B. Lee and P. Wang, Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42 (2004) 843–859. | DOI | MR | Zbl

P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978). | MR | Zbl

P. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). | MR | Zbl

E. Colmenares, G.N. Gatica and R. Oyarzúa, Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Centro de Investigación en Ingeniería Matemática, Universidad de Concepción, (2014). Preprint 2015-07. Available at http://www.ci2ma.udec.cl/publicaciones/prepublicaciones/. | MR

C. Cox, H. Lee and D. Szurley, Finite element approximation of the non-isothermal Stokes-Oldroyd equations. Int. J. Numer. Anal. Model. 4 (2007) 425–440. | MR | Zbl

G. De Vahl Davis, Natural convection of air in a square cavity: A benchmark numerical solution. Int. J. Numer. Meth. Fluids 3 (1983) 249–264. | DOI | Zbl

M. Farhloul and A. Zine, A dual mixed formulation for non-isothermal Oldroyd-Stokes problem. Math. Model. Nat. Phenom. 6 (2011) 130–156. | DOI | MR | Zbl

M. Farhloul, S. Nicaise and L. Paquet, A mixed formulation of Boussinesq equations: Analysis of nonsingular solutions. Math. Comput. 69 (2000) 965–986. | DOI | MR | Zbl

L.E. Figueroa, G.N. Gatica and N. Heuer, A priori and a posteriori error analysis of an augmented mixed finite element method for incompressible fluid flows. Comput. Methods Appl. Mech. Engrg. 198 (2008) 280–291. | DOI | MR | Zbl

L.E. Figueroa, G.N. Gatica and A. Márquez, Augmented mixed finite element methods for the stationary Stokes equations. SIAM J. Sci. Comput. 31 (2008/09) 1082–1119. | DOI | MR | Zbl

T. Fusegi and J.M. Hyun, A numerical study of 3D natural convection in a cube: effects of the horizontal thermal boundary conditions. Fluid Dyn. Res. 8 (1991) 221–230. | DOI

G.N. Gatica, Analysis of a new augmented mixed finite element method for linear elasticity allowing RT0-P1-P0 approximations. ESAIM: M2AN 40 (2006) 1–28. | DOI | Numdam | MR | Zbl

G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014). | MR | Zbl

G.N. Gatica and G.C. Hsiao, On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2. Numer. Math. 61 (1992) 171–214. | DOI | MR | Zbl

G.N. Gatica and W. Wendland, Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63 (1996) 39–75. | DOI | MR | Zbl

G.N. Gatica, A. Márquez and M.A. Sánchez, Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1064–1079. | DOI | MR | Zbl

G.N. Gatica, R. Oyarzúa and F.-J. Sayas, A twofold saddle point approach for the coupling of fluid flow with nonlinear porous media flow. IMA J. Numer. Anal. 32 (2012) 845–887. | DOI | MR | Zbl

Y. Le Pentrec, and G. Lauriat, Effects of the heat transfer at the side walls on natural convection in cavities. J. Heat Trans. 112 (1990) 370–378. | DOI

J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations. Reprint of the 1983 edition. A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester (1986). | MR | Zbl

R. Oyarzúa, T. Qin and D. Schötzau, An exactly divergence-free finite element method for a generalized Boussinesq problem. IMA J. Numer. Anal. 34 (2014) 1104–1135. | DOI | MR | Zbl

A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Vol. 23 of Springer Ser. Comput. Math. Springer-Verlag Berlin Heidelberg (1994). | MR | Zbl

R. Ruiz-Baier and H. Torres, Numerical solution of a multidimensional sedimentation problem using finite volume-element methods. Appl. Numer. Math. 95 (2015) 280–291. | DOI | MR | Zbl

S.B. Savage, Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 92 (1979) 53–96. | DOI | Zbl

  • Gharibi, Zeinab Mixed Virtual Element Approximation for the Five-Field Formulation of the Steady Boussinesq Problem with Temperature-Dependent Parameters, Journal of Scientific Computing, Volume 102 (2025) no. 1 | DOI:10.1007/s10915-024-02722-y
  • Araya, Rodolfo; Cárcamo, Cristian; Poza, Abner H. A stabilized finite element method for the Stokes–Temperature coupled problem, Applied Numerical Mathematics, Volume 187 (2023), p. 24 | DOI:10.1016/j.apnum.2023.02.002
  • Gatica, Gabriel N.; Inzunza, Cristian; Sequeira, Filánder A. New Banach spaces-based fully-mixed finite element methods for pseudostress-assisted diffusion problems, Applied Numerical Mathematics, Volume 193 (2023), p. 148 | DOI:10.1016/j.apnum.2023.07.017
  • Careaga, Julio; Gatica, Gabriel N. Coupled mixed finite element and finite volume methods for a solid velocity-based model of multidimensional sedimentation, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 57 (2023) no. 4, p. 2529 | DOI:10.1051/m2an/2023057
  • Verma, Nitesh; Gómez-Vargas, Bryan; De Oliveira Vilaca, Luis Miguel; Kumar, Sarvesh; Ruiz-Baier, Ricardo Well-posedness and discrete analysis for advection-diffusion-reaction in poroelastic media, Applicable Analysis, Volume 101 (2022) no. 14, p. 4914 | DOI:10.1080/00036811.2021.1877677
  • Benavides, Gonzalo A.; Caucao, Sergio; Gatica, Gabriel N.; Hopper, Alejandro A. A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem, Calcolo, Volume 59 (2022) no. 1 | DOI:10.1007/s10092-021-00451-4
  • Colmenares, Eligio; Gatica, Gabriel N.; Rojas, Juan C. A Banach spaces-based mixed-primal finite element method for the coupling of Brinkman flow and nonlinear transport, Calcolo, Volume 59 (2022) no. 4 | DOI:10.1007/s10092-022-00493-2
  • Álvarez, Mario; Colmenares, Eligio; Sequeira, Filánder A. Analysis of a semi-augmented mixed finite element method for double-diffusive natural convection in porous media, Computers Mathematics with Applications, Volume 114 (2022), p. 112 | DOI:10.1016/j.camwa.2022.03.032
  • Gatica, Gabriel N; Meddahi, Salim; Ruiz-Baier, Ricardo An Lpspaces-based formulation yielding a new fully mixed finite element method for the coupled Darcy and heat equations, IMA Journal of Numerical Analysis, Volume 42 (2022) no. 4, p. 3154 | DOI:10.1093/imanum/drab063
  • Gatica, Gabriel N.; Inzunza, Cristian; Sequeira, Filánder A. A Pseudostress-Based Mixed-Primal Finite Element Method for Stress-Assisted Diffusion Problems in Banach Spaces, Journal of Scientific Computing, Volume 92 (2022) no. 3 | DOI:10.1007/s10915-022-01959-9
  • Gatica, Gabriel N.; Inzunza, Cristian On the well-posedness of Banach spaces-based mixed formulations for the nearly incompressible Navier-Lamé and Stokes equations, Computers Mathematics with Applications, Volume 102 (2021), p. 87 | DOI:10.1016/j.camwa.2021.10.004
  • Alvarez, Mario; Gatica, Gabriel N; Ruiz-Baier, Ricardo A mixed-primal finite element method for the coupling of Brinkman–Darcy flow and nonlinear transport, IMA Journal of Numerical Analysis, Volume 41 (2021) no. 1, p. 381 | DOI:10.1093/imanum/drz060
  • Colmenares, Eligio; Gatica, Gabriel N.; Miranda, Willian Analysis of an augmented fully-mixed finite element method for a bioconvective flows model, Journal of Computational and Applied Mathematics, Volume 393 (2021), p. 113504 | DOI:10.1016/j.cam.2021.113504
  • Gatica, Gabriel N.; Inzunza, Cristian An augmented fully-mixed finite element method for a coupled flow-transport problem, Calcolo, Volume 57 (2020) no. 1 | DOI:10.1007/s10092-020-0355-y
  • Caucao, Sergio; Oyarzúa, Ricardo; Villa-Fuentes, Segundo A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy, Calcolo, Volume 57 (2020) no. 4 | DOI:10.1007/s10092-020-00385-3
  • Almonacid, Javier A.; Gatica, Gabriel N. A Fully-Mixed Finite Element Method for then-Dimensional Boussinesq Problem with Temperature-Dependent Parameters, Computational Methods in Applied Mathematics, Volume 20 (2020) no. 2, p. 187 | DOI:10.1515/cmam-2018-0187
  • Benavides, Gonzalo A.; Caucao, Sergio; Gatica, Gabriel N.; Hopper, Alejandro A. A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem, Computer Methods in Applied Mechanics and Engineering, Volume 371 (2020), p. 113285 | DOI:10.1016/j.cma.2020.113285
  • Colmenares, Eligio; Gatica, Gabriel N.; Moraga, Sebastián A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 54 (2020) no. 5, p. 1525 | DOI:10.1051/m2an/2020007
  • Oyarzúa, Ricardo; Serón, Miguel A Divergence-Conforming DG-Mixed Finite Element Method for the Stationary Boussinesq Problem, Journal of Scientific Computing, Volume 85 (2020) no. 1 | DOI:10.1007/s10915-020-01317-7
  • Gatica, Gabriel N.; Gomez-Vargas, Bryan; Ruiz-Baier, Ricardo Formulation and analysis of fully-mixed methods for stress-assisted diffusion problems, Computers Mathematics with Applications, Volume 77 (2019) no. 5, p. 1312 | DOI:10.1016/j.camwa.2018.11.008
  • Woodfield, James; Alvarez, Mario; Gómez-Vargas, Bryan; Ruiz-Baier, Ricardo Stability and finite element approximation of phase change models for natural convection in porous media, Journal of Computational and Applied Mathematics, Volume 360 (2019), p. 117 | DOI:10.1016/j.cam.2019.04.003
  • Alvarez, Mario; Gatica, Gabriel N.; Gomez-Vargas, Bryan; Ruiz-Baier, Ricardo New Mixed Finite Element Methods for Natural Convection with Phase-Change in Porous Media, Journal of Scientific Computing, Volume 80 (2019) no. 1, p. 141 | DOI:10.1007/s10915-019-00931-4
  • Bürger, Raimund; Méndez, Paul E.; Ruiz-Baier, Ricardo On H(div)-conforming Methods for Double-diffusion Equations in Porous Media, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 3, p. 1318 | DOI:10.1137/18m1196108
  • Almonacid, Javier A.; Gatica, Gabriel N.; Oyarzúa, Ricardo A mixed–primal finite element method for the Boussinesq problem with temperature-dependent viscosity, Calcolo, Volume 55 (2018) no. 3 | DOI:10.1007/s10092-018-0278-z
  • Gatica, Gabriel N.; Gomez-Vargas, Bryan; Ruiz-Baier, Ricardo Analysis and mixed-primal finite element discretisations for stress-assisted diffusion problems, Computer Methods in Applied Mechanics and Engineering, Volume 337 (2018), p. 411 | DOI:10.1016/j.cma.2018.03.043
  • Caucao, Sergio; Gatica, Gabriel N.; Oyarzúa, Ricardo Analysis of an augmented fully-mixed formulation for the coupling of the Stokes and heat equations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 52 (2018) no. 5, p. 1947 | DOI:10.1051/m2an/2018027
  • Alvarez, Mario; Gatica, Gabriel N.; Ruiz-Baier, Ricardo A posteriori error estimation for an augmented mixed-primal method applied to sedimentation–consolidation systems, Journal of Computational Physics, Volume 367 (2018), p. 322 | DOI:10.1016/j.jcp.2018.04.040
  • Colmenares, Eligio; Gatica, Gabriel N.; Oyarzúa, Ricardo An augmented fully-mixed finite element method for the stationary Boussinesq problem, Calcolo, Volume 54 (2017) no. 1, p. 167 | DOI:10.1007/s10092-016-0182-3
  • Discacciati, Marco; Oyarzúa, Ricardo A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem, Numerische Mathematik, Volume 135 (2017) no. 2, p. 571 | DOI:10.1007/s00211-016-0811-4
  • Alvarez, Mario; Gatica, Gabriel N.; Ruiz-Baier, Ricardo A posteriorierror analysis for a viscous flow-transport problem, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 50 (2016) no. 6, p. 1789 | DOI:10.1051/m2an/2016007
  • Alvarez, Mario; Gatica, Gabriel N.; Ruiz-Baier, Ricardo A mixed-primal finite element approximation of a sedimentation–consolidation system, Mathematical Models and Methods in Applied Sciences, Volume 26 (2016) no. 05, p. 867 | DOI:10.1142/s0218202516500202
  • Colmenares, Eligio; Gatica, Gabriel N.; Oyarzúa, Ricardo Analysis of an augmented mixed‐primal formulation for the stationary Boussinesq problem, Numerical Methods for Partial Differential Equations, Volume 32 (2016) no. 2, p. 445 | DOI:10.1002/num.22001
  • Caman͂o, Jessika; Gatica, Gabriel N.; Oyarzúa, Ricardo; Tierra, Giordano An Augmented Mixed Finite Element Method for the Navier–Stokes Equations with Variable Viscosity, SIAM Journal on Numerical Analysis, Volume 54 (2016) no. 2, p. 1069 | DOI:10.1137/15m1013146

Cité par 33 documents. Sources : Crossref