A hybrid variational principle for the Keller–Segel system in 2
ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1553-1576.

We construct weak global in time solutions to the classical Keller–Segel system describing cell movement by chemotaxis in two dimensions when the total mass is below the established critical value. Our construction takes advantage of the fact that the Keller–Segel system can be realized as a gradient flow in a suitable functional product space. This allows us to employ a hybrid variational principle which is a generalisation of the minimizing implicit scheme for Wasserstein distances introduced by [R. Jordan, D. Kinderlehrer and F. Otto, SIAM J. Math. Anal. 29 (1998) 1–17].

Reçu le :
DOI : 10.1051/m2an/2015021
Classification : 35K65, 35K40, 47J30, 35Q92, 35B33
Mots-clés : Chemotaxis, Keller–Segel model, minimizing scheme, Kantorovich–Rubinstein–Wasserstein distance
Blanchet, Adrien 1 ; Carrillo, José Antonio 2 ; Kinderlehrer, David 3 ; Kowalczyk, Michał 4 ; Laurençot, Philippe 5 ; Lisini, Stefano 6

1 TSE (GREMAQ, Université Toulouse 1 Capitole), 21 Allée de Brienne, 31015 Toulouse cedex 6, France.
2 Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
3 Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
4 Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile.
5 Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, 31062 Toulouse cedex 9, France.
6 Università degli Studi di Pavia, Dipartimento di Matematica “F. Casorati”, via Ferrata 1, 27100 Pavia, Italy.
@article{M2AN_2015__49_6_1553_0,
     author = {Blanchet, Adrien and Carrillo, Jos\'e Antonio and Kinderlehrer, David and Kowalczyk, Micha{\l} and Lauren\c{c}ot, Philippe and Lisini, Stefano},
     title = {A hybrid variational principle for the {Keller{\textendash}Segel} system in $\mathbb{R}^{2}$},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1553--1576},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {6},
     year = {2015},
     doi = {10.1051/m2an/2015021},
     mrnumber = {3423264},
     zbl = {1334.35086},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2015021/}
}
TY  - JOUR
AU  - Blanchet, Adrien
AU  - Carrillo, José Antonio
AU  - Kinderlehrer, David
AU  - Kowalczyk, Michał
AU  - Laurençot, Philippe
AU  - Lisini, Stefano
TI  - A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1553
EP  - 1576
VL  - 49
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2015021/
DO  - 10.1051/m2an/2015021
LA  - en
ID  - M2AN_2015__49_6_1553_0
ER  - 
%0 Journal Article
%A Blanchet, Adrien
%A Carrillo, José Antonio
%A Kinderlehrer, David
%A Kowalczyk, Michał
%A Laurençot, Philippe
%A Lisini, Stefano
%T A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1553-1576
%V 49
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2015021/
%R 10.1051/m2an/2015021
%G en
%F M2AN_2015__49_6_1553_0
Blanchet, Adrien; Carrillo, José Antonio; Kinderlehrer, David; Kowalczyk, Michał; Laurençot, Philippe; Lisini, Stefano. A hybrid variational principle for the Keller–Segel system in $\mathbb{R}^{2}$. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1553-1576. doi : 10.1051/m2an/2015021. http://archive.numdam.org/articles/10.1051/m2an/2015021/

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Clarendon Press Oxford (2000). | MR | Zbl

L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lect. Math. ETH Zürich. Birkhäuser Verlag, Basel (2005). | MR | Zbl

P. Biler, Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9 (1999) 347–359. | MR | Zbl

P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles. I, Colloq. Math. 66 (1994) 319–334. | DOI | MR | Zbl

P. Biler, L. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller–Segel model of chemotaxis. J. Math. Biol. 63 (2011) 1–32. | DOI | MR | Zbl

P. Biler, I. Guerra and G. Karch, Large global-in-time solutions of the parabolic-parabolic Keller–Segel system on the plane. Preprint arXiv:1401.7650 [math.AP] (2014). | MR

P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23 (1994) 1189–1209. | DOI | MR | Zbl

A. Blanchet and P. Laurençot, The parabolic-parabolic Keller–Segel system with critical diffusion as a gradient flow in R d ,d3. Commun. Partial Differ. Eq. 38 (2013) 658–686. | DOI | MR | Zbl

A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller–Segel model. SIAM J. Numer. Anal. 46 (2008) 691–721. | DOI | MR | Zbl

A. Blanchet, J.A. Carrillo and N. Masmoudi, Infinite time aggregation for the critical Patlak-Keller–Segel model in 2 . Commun. Pure Appl. Math. 61 (2008) 1449–1481. | DOI | MR | Zbl

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. (2006) (electronic). | MR | Zbl

A. Blanchet, E. Carlen and J.A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller–Segel model. J. Funct. Anal. 262 (2012) 2142–2230. | DOI | MR | Zbl

V. Calvez and J.A. Carrillo, Volume effects in the Keller–Segel model: energy estimates preventing blow-up. J. Math. Pures Appl. 86 (2006) 155–175. | DOI | MR | Zbl

V. Calvez and L. Corrias, The parabolic-parabolic Keller–Segel model in 2 . Commun. Math. Sci. 6 (2008) 417–447. | DOI | MR | Zbl

J.F. Campos and J. Dolbeault, Asymptotic estimates for the parabolic-elliptic Keller–Segel model in the plane. Commun. Partial Differ. Equ. 39 (2014) 806–841. | DOI | MR | Zbl

J.A. Carrillo and F. Santambrogio, Local in time L bounds of nonlinear Fokker–Planck equations via variational schemes. In preparation (2015).

J.A. Carrillo, R.J. Mccann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19 (2003) 1–48. | MR | Zbl

J.A. Carrillo, S. Lisini and E. Mainini, Uniqueness for Keller–Segel-type chemotaxis models. Discrete Contin. Dyn. Syst. 34 (2014) 1319–1338. | DOI | MR | Zbl

S. Dejak, D. Egli, P. Lushnikov and I. Sigal, On blowup dynamics in the Keller–Segel model of chemotaxis. St. Petersburg Math. J. 25 (2014) 547–574. | DOI | MR | Zbl

Y. Epshteyn and A. Kurganov, New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47 (2008) 386–408. | DOI | MR | Zbl

Y. Epshteyn, Upwind-difference potentials method for Patlak–Keller–Segel chemotaxis model. J. Sci. Comput. 53 (2012) 689–713. | DOI | MR | Zbl

M.A. Herrero and J.J. Velázquez, A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa, Cl. Sci. Serie IV 24 (1997) 633–683. | Numdam | MR | Zbl

S. Ibrahim, N. Masmoudi and K. Nakanishi, Trudinger–Moser inequality on the whole plane with the exact growth condition. J. Eur. Math. Soc. (JEMS) 17 (2015) 819–835. | DOI | MR | Zbl

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. | DOI | MR | Zbl

E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399–415. | DOI | MR | Zbl

E.F. Keller and L.A. Segel, Model for chemotaxis. J. Theor. Biol. 30 (1971) 225–234. | DOI | Zbl

D. Kinderlehrer and M. Kowalczyk, The Janossy effect and hybrid variational principles. Discrete Contin. Dyn. Syst. Ser. B 11 (2009) 153–176. | MR | Zbl

D. Kinderlehrer, L. Monsaingeon and X. Xu, A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations. To appear in ESAIM: COCV (2015). Doi:. | DOI | Numdam | MR

P. Laurençot and B.-V. Matioc, A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Partial Differ. Equ. 47 (2013) 319–341. | DOI | MR | Zbl

D. Matthes, R.J. Mccann and G. Savaré, A family of nonlinear fourth order equations of gradient flow type. Comm. Partial Differ. Equ. 34 (2009) 1352–1397. | DOI | MR | Zbl

Y. Mimura, The variational formulation of the fully parabolic Keller–Segel system with degenerate diffusion. Preprint (2012). | MR

N. Mizoguchi, Global existence for the Cauchy problem of the parabolic-parabolic Keller–Segel system on the plane. Calc. Var. Partial Differ. Equ. 48 (2013) 491–505. | DOI | MR | Zbl

E. Onofri, On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys. 86 (1982) 321–326. | DOI | MR | Zbl

F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differ. Equ. 26 (2001) 101–174. | DOI | MR | Zbl

P. Raphaël and R. Schweyer, On the stability of critical chemotactic aggregation. Mathematische Annalen 359 (2014) 267–377. | DOI | MR | Zbl

R. Schweyer, Stable blow-up dynamic for the parabolic-parabolic Patlak–Keller–Segel model. Preprint arXiv:1403.4975 [math.AP] (2014).

C. Villani, Topics in optimal transportation. Vol. 58 of Grad. Stud. Math. American Mathematical Society, Providence, RI (2003). | MR | Zbl

J. Zinsl, Existence of solutions for a nonlinear system of parabolic equations with gradient flow structure. Monatshefte für Mathematik (2013) 1–27. | MR | Zbl

J. Zinsl and D. Matthes, Exponential convergence to equilibrium in a coupled gradient flow system modelling chemotaxis. Anal. Partial Differ. Equ. 8 (2015) 425–466. | MR | Zbl

Cité par Sources :