In open pit mining, one must dig a pit, that is, excavate the upper layers of ground before reaching the ore. The walls of the pit must satisfy some geomechanical constraints, in order not to collapse. The question then arises how to mine the ore optimally, that is, how to find the optimal pit. We set up the problem in a continuous (as opposed to discrete) framework, and we show, under weak assumptions, the existence of an optimum pit. For this, we formulate an optimal transportation problem, where the criterion is lower semi-continuous and is allowed to take the value . We show that this transportation problem is a strong dual to the optimum pit problem, and also yields optimality (complementarity slackness) conditions.
DOI : 10.1051/m2an/2015026
Mots-clés : Optimal transportation, optimal pit mine design, Kantorovich duality
@article{M2AN_2015__49_6_1659_0, author = {Ekeland, Ivar and Queyranne, Maurice}, title = {Optimal pits and optimal transportation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1659--1670}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015026}, zbl = {1357.37091}, mrnumber = {3423270}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2015026/} }
TY - JOUR AU - Ekeland, Ivar AU - Queyranne, Maurice TI - Optimal pits and optimal transportation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1659 EP - 1670 VL - 49 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2015026/ DO - 10.1051/m2an/2015026 LA - en ID - M2AN_2015__49_6_1659_0 ER -
%0 Journal Article %A Ekeland, Ivar %A Queyranne, Maurice %T Optimal pits and optimal transportation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1659-1670 %V 49 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2015026/ %R 10.1051/m2an/2015026 %G en %F M2AN_2015__49_6_1659_0
Ekeland, Ivar; Queyranne, Maurice. Optimal pits and optimal transportation. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1659-1670. doi : 10.1051/m2an/2015026. http://archive.numdam.org/articles/10.1051/m2an/2015026/
A continuous framework for open pit mine planning. Math. Methods Oper. Res. 73 (2011) 29–54 | DOI | MR | Zbl
, and ,D. Bienstock and Z. Mark, Solving LP Relaxations of Large-Scale Precedence constrained problems. Proc. of 14th Conference on Integer Programming and Combinatorial Optimization (IPCO 2010). Vol. 6080 of Lect. Note Comput. Sci. Springer (2010) 1–14. | MR | Zbl
G. Carlier, Duality and Existence for a Class of Mass Transportation Problems and Economic Applications, in Adv. Math. Econ. Springer, Japan (2003) 1–21 | MR | Zbl
Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidimensional types. Econ. Theory 42 (2010) 275–315 | DOI | MR | Zbl
,MineLib: A library of open pit mining problems. Ann. Oper. Res. 206 (2012) 91–114 | MR | Zbl
, , and ,Duality results for stationary problems of open pit mine planning in a continuous function framework. Comput. Appl. Math. 30 (2011) 197–215. | MR | Zbl
and ,J. Guzmán, Ultimate Pit Limit Determination: A New Formulation for an Old (and Poorly Specified) Problem Workshop on Operations Research in Mining, Viña del Mar, Chile (2008) 10–12.
P. Huttagosol and R.E. Cameron, A Computer Design of Ultimate Pit Limit by Using Transportation Algorithm, in Proc. of the 23rd International Symposium on Applications of Computers in Mining (1992) 443–460.
Th. B. Johnson, Optimum open pit mine production scheduling. Report ORC-68-11, Operations Research Center. University of California Berkeley (1968).
R. Khalokakaie, Computer-aided optimal open pit design with variable slope angles. Ph.D. thesis, University of Leeds (1999).
Lerchs-Grossmann algorithm with variable slope angles. Mining Technology 109 (2000) 77–85. | DOI
, and ,G. Matheron, Paramétrage de contours optimaux. Note géostatistique 128. Fontainebleau. Février (1975).
G. Matheron, Compléments sur le paramétrage de contours optimaux. Note géostatistique 129. Fontainebleau, Février (1975).
N. Morales, Modelos Matemáticos Para Planificación Minera. Engineering thesis. Universidad de Chile, Santiago (2002).
A review of operations research in mine planning. Interfaces 40 (2010) 222–245. | DOI
, , , and ,Maximal closure of a graph and applications to combinatorial problems. Manag. Sci. 22 (1976) 1268–1272 | DOI | MR | Zbl
,A PDE constraint formulation of Open Pit Mine Planning Problems. Proc. Appl. Math. Mech. 13 (2013) 391–392 | DOI
, , and ,Minimizing a submodular function on a lattice. Oper. Res. 26 (1978) 305–321. | DOI | MR | Zbl
,C. Villani, Topics in Optimal Transportation. In vol. 58 of Grad. Stud. Math. AMS (2003). | MR | Zbl
Cité par Sources :