In this survey article, the author summarizes the motivations, key ideas and main applications of ramified optimal transportation that the author has studied in recent years.
DOI : 10.1051/m2an/2015028
Mots-clés : Optimal transportation, transport path, branching network, directed graph, ramified transportation
@article{M2AN_2015__49_6_1791_0, author = {Xia, Qinglan}, title = {Motivations, ideas and applications of ramified optimal transportation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1791--1832}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015028}, mrnumber = {3423276}, zbl = {1331.49067}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2015028/} }
TY - JOUR AU - Xia, Qinglan TI - Motivations, ideas and applications of ramified optimal transportation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1791 EP - 1832 VL - 49 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2015028/ DO - 10.1051/m2an/2015028 LA - en ID - M2AN_2015__49_6_1791_0 ER -
%0 Journal Article %A Xia, Qinglan %T Motivations, ideas and applications of ramified optimal transportation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1791-1832 %V 49 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2015028/ %R 10.1051/m2an/2015028 %G en %F M2AN_2015__49_6_1791_0
Xia, Qinglan. Motivations, ideas and applications of ramified optimal transportation. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1791-1832. doi : 10.1051/m2an/2015028. http://archive.numdam.org/articles/10.1051/m2an/2015028/
L. Ambrosio, Lecture notes on Optimal Transport Problems. Mathematical Aspects of Evolving Interfaces (Funchal, 2000). In vol. 1812 of Lect. Notes Math. Springer, Berlin (2003) 1–52. | MR | Zbl
Décomposition polaire et ré arrangement monotone des champs de vecteurs [Polar decomposition and increasing rearrangement of vector fields]. C. R. Acad. Sci. Paris Sér. I Math. 305 (1987) 805–808. | MR | Zbl
,D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry. American Mathematical Society (2001). | MR | Zbl
Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Amer. Math. Soc. 15 (2002) 1–26. | DOI | MR | Zbl
, and ,R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogenes. Vol. 242 of Lect. Notes Math. Springer-Verlag (1971). | MR | Zbl
On the dimension of an irrigable measure. Rend. Semin. Mat. Univ. Padova 117 (2007) 1–49. | Numdam | MR | Zbl
and ,Differential equations methods for the Monge−Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999) 653. | Zbl
and ,H. Federer, Geometric measure theory. In vol. 153 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York Inc. (1969). | Zbl
Uniqueness and transport density in Monge’s mass transportation problem. Calc. Var. Partial Differ. Equ. 15 (2002) 81–113. | DOI | Zbl
and ,Flat chains over a finite coefficient group. Trans. Amer. Math. Soc. 121 (1966) 160-186. | DOI | Zbl
,The geometry of optimal transportation. Acta Math. 177 (1996) 113–161. | DOI | Zbl
and ,Diffusion-Limited Aggregation: A Model for Pattern Formation. Phys. Today 53 (2000) 36–41. | DOI
,A variational model of irrigation patterns, Interfaces and Free Boundaries 5 (2003) 391–416. | DOI | Zbl
, and ,A. Mas-Colell, M. Whinston and J. Green, Microeconomic Theory. Oxford University Press, New York (1995). | Zbl
Progress in DLA Research. Physica D 86 (1995) 104–112. | DOI | Zbl
,On the problem of Steiner. Canad. Math. Bull. 4 (1961) 143–148. | DOI | Zbl
,Optimal Channel Networks, Landscape Function and Branched Transport. Interfaces Free Bound. 9 (2007) 149–169. | DOI | Zbl
,L. Simon, Lectures on geometric measure theory. In vol. 3 of Proc. Centre Math. Anal. Australian National University (1983). | Zbl
Size minimization and approximating problems. Calc. Var. Partial Differ. Equ. 17 (2003) 405–442. | DOI | Zbl
and ,Topics in Mass Transportation. Vol. 58 of AMS Grad. Stud. Math. 58 (2003). | DOI | Zbl
,C. Villani, Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften (2009). | Zbl
Rectifiability of flat chains. Ann. Math. 150 (1999) 165–184. | DOI | Zbl
,Diffusion-Limited Aggregation, A Kinetic Critical Phenomenon. Phys. Rev. Lett. 47 (1981) 1400–1403. | DOI
and ,Optimal paths related to transport problems. Commun. Contemp. Math. 5 (2003) 251–279. | DOI | Zbl
,Interior regularity of optimal transport paths. Calc. Var. Partial Differential Equ. 20 (2004) 283–299. | DOI | Zbl
,Q. Xia, An application of optimal transport paths to urban transport networks. Discr. Contin. Dyn. Syst., Supp. (2005) 904–910. | Zbl
The formation of tree leaf. ESAIM: COCV 13 (2007) 359–377. | Numdam | Zbl
,The geodesic problem in quasimetric spaces. J. Geom. Anal. 19 (2009) 452–479. | DOI | Zbl
,Boundary regularity of optimal transport paths. Adv. Calc. Var. 4 (2011) 153–174. | Zbl
,Q. Xia, Numerical simulation of optimal transport paths. In vol. 1, Proc. of the Second International Conference on Computer Modeling and Simulation ICCMS 2010 (2010) 521–525. DOI: . | DOI
Ramified optimal transportation in geodesic metric spaces. Adv. Calc. Var. 4 (2011) 277–307. | Zbl
,On the transport dimension of measures. SIAM J. Math. Anal. 41 (2010) 2407–2430. | DOI | Zbl
and ,Diffusion-limited aggregation driven by optimal transportation. Fractals 18 (2010) 1–7.
and ,The exchange value embedded in a transport system. Appl. Math. Optim. 62 (2010) 229–252. | DOI | Zbl
and ,On the ramified optimal allocation problem. Netw. heterog. Media 8 (2013) 591–624. | DOI | Zbl
and ,On landscape functions associated with transport paths. Discr. Contin. Dyn. Syst. A 34 (2014). | Zbl
,Transport efficiency of the human placenta. J. Coupled Syst. Multiple Dyn. 2 (2014).
and ,Q. Xia, C. Salafia and M. Simon, Optimal transport and placental function. Vol. 17 of Interdisciplinary Topics Appl. Math., Modeling and Computational Science. Springer Proc. Math. Stat. Springer (2015). DOI: . | DOI
Q. Xia and C. Salafia, Human placentas, Optimal transportation and Autism (submitted).
Probability distributions of placental morphological measurements and origins of variability of placental shapes. Placenta 34 (2013) 493–6. | DOI
, and ,Cité par Sources :