Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods
ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 635-650.

We build a bridge between the hybrid high-order (HHO) and the hybridizable discontinuous Galerkin (HDG) methods in the setting of a model diffusion problem. First, we briefly recall the construction of HHO methods and derive some new variants. Then, by casting the HHO method in mixed form, we identify the numerical flux so that the HHO method can be compared to HDG methods. In turn, the incorporation of the HHO method into the HDG framework brings up new, efficient choices of the local spaces and a new, subtle construction of the numerical flux ensuring optimal orders of convergence on meshes made of general shape-regular polyhedral elements. Numerical experiments comparing two of these methods are shown.

Reçu le :
DOI : 10.1051/m2an/2015051
Classification : 65N30, 65N08
Mots-clés : Hybridizable discontinuous Galerkin, hybrid high-order, variable diffusion problems
Cockburn, Bernardo 1 ; Di Pietro, Daniele A. 2 ; Ern, Alexandre 3

1 School of Mathematics, University of Minnesota, Minneapolis, USA
2 University of Montpellier, Institut Montpelliérain Alexander Grothendieck, 34095 Montpellier, France
3 University Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée cedex 2, France
@article{M2AN_2016__50_3_635_0,
     author = {Cockburn, Bernardo and Di Pietro, Daniele A. and Ern, Alexandre},
     title = {Bridging the hybrid high-order and hybridizable discontinuous {Galerkin} methods},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {635--650},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {3},
     year = {2016},
     doi = {10.1051/m2an/2015051},
     zbl = {1341.65045},
     mrnumber = {3507267},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2015051/}
}
TY  - JOUR
AU  - Cockburn, Bernardo
AU  - Di Pietro, Daniele A.
AU  - Ern, Alexandre
TI  - Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 635
EP  - 650
VL  - 50
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2015051/
DO  - 10.1051/m2an/2015051
LA  - en
ID  - M2AN_2016__50_3_635_0
ER  - 
%0 Journal Article
%A Cockburn, Bernardo
%A Di Pietro, Daniele A.
%A Ern, Alexandre
%T Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 635-650
%V 50
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2015051/
%R 10.1051/m2an/2015051
%G en
%F M2AN_2016__50_3_635_0
Cockburn, Bernardo; Di Pietro, Daniele A.; Ern, Alexandre. Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 635-650. doi : 10.1051/m2an/2015051. http://archive.numdam.org/articles/10.1051/m2an/2015051/

T. Arbogast, M.F. Wheeler and I. Yotov, Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. SIAM J. Numer. Anal. 34 (1997) 828–852. | DOI | MR | Zbl

B. Ayuso de Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. Preprint (2014). | arXiv | Numdam | MR

L. Beirão da Veiga, K. Lipnikov and G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems. MS&A. Springer (2014). | MR | Zbl

J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. | DOI | Numdam | MR | Zbl

F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. | DOI | MR | Zbl

F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3682–3692. | DOI | MR | Zbl

P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706. | DOI | MR | Zbl

Z. Chen, BDM mixed methods for a nonlinear elliptic problem. J. Comput. Appl. Math. 53 (1994) 207–223. | DOI | MR | Zbl

B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47 (2009) 1319–1365. | DOI | MR | Zbl

B. Cockburn, J. Gopalakrishnan and F.-J. Sayas, A projection-based error analysis of HDG methods. Math. Comput. 79 (2010) 1351–1367. | DOI | MR | Zbl

B. Cockburn, W. Qiu and K. Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81 (2012) 1327–1353. | DOI | MR | Zbl

B. Cockburn and K. Shi, Devising HDG methods for Stokes flow: An overview. Comput. Fluids 98 (2014) 221–229. | DOI | MR | Zbl

D.A. Di Pietro, J. Droniou and A. Ern, A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J. Numer. Anal. 53 (2015) 2135–2157. | DOI | MR | Zbl

D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Vol. 69 of Math. Appl. Springer-Verlag, Berlin (2012). | MR | Zbl

D.A. Di Pietro and A. Ern, Equilibrated tractions for the Hybrid High-Order method. C. R. Acad. Sci Paris, Ser. I 353 (2015) 279–282. | DOI | MR | Zbl

D.A. Di Pietro, and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Meth. Appl. Mech. Engrg. 283 2015 1–21. | DOI | MR | Zbl

D.A. Di Pietro, and A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Acad. Sci Paris, Ser. I 353 (2015) 31–34. | DOI | MR | Zbl

D.A. Di Pietro, A. Ern and S. Lemaire. An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl. Math. 14 (2014) 461–472. | DOI | MR | Zbl

D.A. Di Pietro and S. Lemaire, An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84 (2015) 1–31. | DOI | MR | Zbl

J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. | DOI | MR | Zbl

J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. M3AS Math. Models Methods Appl. Sci. 20 (2010) 1–31. | MR | Zbl

T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441–463. | DOI | MR | Zbl

R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. | DOI | MR | Zbl

R. Herbin and F. Hubert, Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids. In Finite Volumes for Complex Applications V. Edited by R. Eymard and J.-M. Hérard. John Wiley and Sons (2008) 659–692. | MR

H. Kabaria, A. Lew and B. Cockburn, A hybridizable discontinuous Galerkin formulation for nonlinear elasticity. Comput. Methods Appl. Mech. Engrg. 283 (2015) 303–329. | DOI | MR | Zbl

J. Koebbe, A computationally efficient modification of mixed finite element methods for flow problems with full transmissivity tensors. Numer. Methods Partial Differ. Equ. 9 (1993) 339–355. | DOI | MR | Zbl

Y. Kuznetsov, K. Lipnikov and M. Shashkov, Mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci. 8 (2004) 301–324. | DOI | MR | Zbl

C. Le Potier, A finite Volume Method for the Approximation of Highly Anisotropic Diffusion Operators on Unstructured Meshes. In Finite Volumes for Complex Applications IV (2005). | MR

C. Lehrenfeld, Hybrid Discontinuous Galerkin methods for incompressible flow problems. Diploma thesis, MathCCES/IGPM, RWTH Aachen (2010).

K. Lipnikov and G. Manzini. A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation. J. Comput. Phys. 272 (2014) 360–385. | DOI | MR | Zbl

I. Oikawa, A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65 (2015) 327–340. | DOI | MR | Zbl

W. Qiu and K. Shi, An HDG method for linear elasticity with strongly symmetric stresses. Preprint (2015). | arXiv

W. Qiu and K. Shi. An HDG method for convection-diffusion equations. J. Sci. Comput. 66 (2016) 346–357. | DOI | MR | Zbl

S.-C. Soon, Hybridizable discontinuous Galerkin methods for solid mechanics. Ph.D. thesis, University of Minnesota, Minneapolis (2008).

S.-C. Soon, B. Cockburn and H.K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Engrg. 80 (2009) 1058–1092. | DOI | MR | Zbl

Cité par Sources :