We analyze upwind difference methods for strongly degenerate convection-diffusion equations in several spatial dimensions. We prove that the local -error between the exact and numerical solutions is , where is the spatial dimension and is the grid size. The error estimate is robust with respect to vanishing diffusion effects. The proof makes effective use of specific kinetic formulations of the difference method and the convection-diffusion equation. This paper is a continuation of [K.H. Karlsen, N.H. Risebro E.B. Storrøsten, Math. Comput. 83 (2014) 2717–2762], in which the one-dimensional case was examined using the Kružkov−Carrillo entropy framework.
Mots-clés : Degenerate convection-diffusion equations, entropy conditions, finite difference methods, error estimates
@article{M2AN_2016__50_2_499_0, author = {Karlsen, Kenneth Hvistendahl and Risebro, Nils Henrik and Storr{\o}sten, Erlend Briseid}, title = {On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {499--539}, publisher = {EDP-Sciences}, volume = {50}, number = {2}, year = {2016}, doi = {10.1051/m2an/2015057}, mrnumber = {3482553}, zbl = {1342.65182}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an/2015057/} }
TY - JOUR AU - Karlsen, Kenneth Hvistendahl AU - Risebro, Nils Henrik AU - Storrøsten, Erlend Briseid TI - On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 499 EP - 539 VL - 50 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an/2015057/ DO - 10.1051/m2an/2015057 LA - en ID - M2AN_2016__50_2_499_0 ER -
%0 Journal Article %A Karlsen, Kenneth Hvistendahl %A Risebro, Nils Henrik %A Storrøsten, Erlend Briseid %T On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 499-539 %V 50 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an/2015057/ %R 10.1051/m2an/2015057 %G en %F M2AN_2016__50_2_499_0
Karlsen, Kenneth Hvistendahl; Risebro, Nils Henrik; Storrøsten, Erlend Briseid. On the convergence rate of finite difference methods for degenerate convection-diffusion equations in several space dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 2, pp. 499-539. doi : 10.1051/m2an/2015057. http://archive.numdam.org/articles/10.1051/m2an/2015057/
Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations. J. Hyperbolic Differ. Equ. 7 (2010) 1–67. | DOI | MR | Zbl
, and ,On uniqueness techniques for degenerate convection-diffusion problems. Int. J. Dyn. Syst. Differ. Eq. 4 (2012) 3–34. | MR | Zbl
and ,Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comput. 73 (2004) 63–94. | DOI | MR | Zbl
, and ,Error bounds for monotone approximation schemes for Hamilton−Jacobi−Bellman equations. SIAM J. Numer. Anal. 43 (2005) 540–558. | DOI | MR | Zbl
and ,Kružkov’s estimates for scalar conservation laws revisited. Trans. Amer. Math. Soc. 350 (1998) 2847–2870. | DOI | MR | Zbl
and ,Diffusive BGK approximations for nonlinear multidimensional parabolic equations. Indiana Univ. Math. J. 49 (2000) 723–749. | DOI | MR | Zbl
, and ,A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Commun. Pure Appl. Math. 61 (2008) 1–17. | DOI | MR | Zbl
and .Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (1999) 269–361. | DOI | MR | Zbl
,Un principe du maximum pour des opérateurs monotones. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 823–827. | DOI | MR | Zbl
and ,Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 20 (2003) 645–668. | DOI | Numdam | MR | Zbl
and ,Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Commun. Pure Appl. Anal. 4 (2005) 241–266. | DOI | MR | Zbl
and ,L1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations. Trans. Amer. Math. Soc. 358 (2006) 937–963. | DOI | MR | Zbl
and ,Continuous dependence and error estimation for viscosity methods. Acta Numer. 12 (2003) 127–180. | DOI | MR | Zbl
,Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265–298. | DOI | MR | Zbl
and ,Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43 (1984) 1–19. | DOI | MR | Zbl
and ,C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Vol. 325 of Grundl. Math. Wiss. [Fundamental Principles of Mathematical Sciences]. 3rd edition Springer-Verlag, Berlin (2010). | MR | Zbl
Discrete approximations of BV solutions to doubly nonlinear degenerate parabolic equations. Numer. Math. 86 (2000) 377–417. | DOI | MR | Zbl
and ,Monotone difference approximations of BV solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal. 37 (2000) 1838–1860. | DOI | MR | Zbl
and ,An error estimate for viscous approximate solutions of degenerate parabolic equations. J. Nonlin. Math. Phys. 9 (2002) 262–281. | DOI | MR | Zbl
and ,Error estimate for approximate solutions of a nonlinear convection-diffusion problem. Adv. Differ. Equ. 7 (2002) 419–440. | MR | Zbl
, and ,Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41–82. | DOI | MR | Zbl
, , and ,H. Holden, K.H. Karlsen, K.-A. Lie and N.H. Risebro, Splitting methods for partial differential equations with rough solutions. EMS Series of Lect. Math. Analysis and MATLAB programs. European Mathematical Society (EMS), Zürich (2010). | MR | Zbl
Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. ESAIM: M2AN 35 (2001) 239–269. | DOI | Numdam | MR | Zbl
and ,An error estimate for the finite difference approximation to degenerate convection-diffusion equations. Numer. Math. 121 (2012) 367–395. | DOI | MR | Zbl
, ,L1 error estimates for difference approximations of degenerate convection-diffusion equations. Math. Comput. 83 (2014) 2717–2762. | DOI | MR | Zbl
, ,First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. | MR | Zbl
,The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients. Appl. Math. Optim. 52 (2005) 365–399. | DOI | MR | Zbl
,N.N. Kuznecov, The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation. Ž. Vyčisl. Mat. i Mat. Fiz. 16 (1976) 1489–1502, 1627. | MR | Zbl
A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7 (1994) 169–191. | DOI | MR | Zbl
, and ,Optimal rate of convergence for anisotropic vanishing viscosity limit of a scalar balance law. SIAM J. Math. Anal. 34 (2003) 1300–1307. | DOI | MR | Zbl
and ,A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations. ESAIM: M2AN 35 (2001) 355–387. | DOI | Numdam | MR | Zbl
,N.H. Pavel, Differential equations, flow invariance and applications. Vol. 113 of Res. Notes Math. Pitman (Advanced Publishing Program), Boston, MA (1984). | MR | Zbl
Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure. J. Math. Pures Appl. 77 (1998) 1055–1064. | DOI | MR | Zbl
,On the generators of non-negative contraction semigroups in Banach lattices. J. Math. Soc. Japan 20 (1968) 423–436. | DOI | MR | Zbl
,The Cauchy problem for second order quasilinear degenerate parabolic equations. Mat. Sb. (N.S.) 78 (1969) 374–396. | MR | Zbl
and ,Some properties of functions in BVx and their applications to the uniqueness of solutions for degenerate quasilinear parabolic equations. Northeast. Math. J. 5 (1989) 395–422. | MR | Zbl
and ,Cité par Sources :