Geometrically defined basis functions for polyhedral elements with applications to computational electromagnetics
ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 677-698.

In the recent years, reformulating the mathematical description of physical laws in an algebraic form using tools from algebraic topology gained popularity in computational physics. Physical variables are defined as fluxes or circulations on oriented geometric elements of a pair of dual interlocked cell complexes, while physical laws are expressed in a metric-free fashion with incidence matrices. The metric and the material information are encoded in the discrete counterpart of the constitutive laws of materials, also referred to as constitutive or material matrices. The stability and consistency of the method is guaranteed by precise properties (symmetry, positive definiteness, consistency) that material matrices have to fulfill. The main advantage of this approach is that material matrices, even for arbitrary star-shaped polyhedral elements, can be geometrically defined, by simple closed-form expressions, in terms of the geometric elements of the primal and dual grids. That is why this original technique may be considered as a “Discrete Geometric Approach” (DGA) to computational physics. This paper first details the set of vector basis functions associated with the edges and faces of a polyhedral primal grid or of a dual grid. Then, it extends the construction of constitutive matrices for bianisotropic media.

DOI : 10.1051/m2an/2015077
Classification : 65N06, 65N30, 78-08
Mots-clés : Discrete Geometric Approach (DGA), discrete constitutive equations, discrete hodge star operator, non-orthogonal polyhedral dual grids, bianisotropic media
Codecasa, Lorenzo 1 ; Specogna, Ruben 2 ; Trevisan, Francesco 1

1 Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
2 Università di Udine, Via delle Scienze 206, 33100 Udine, Italy
@article{M2AN_2016__50_3_677_0,
     author = {Codecasa, Lorenzo and Specogna, Ruben and Trevisan, Francesco},
     title = {Geometrically defined basis functions for polyhedral elements with applications to computational electromagnetics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {677--698},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {3},
     year = {2016},
     doi = {10.1051/m2an/2015077},
     zbl = {1347.78010},
     mrnumber = {3507269},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an/2015077/}
}
TY  - JOUR
AU  - Codecasa, Lorenzo
AU  - Specogna, Ruben
AU  - Trevisan, Francesco
TI  - Geometrically defined basis functions for polyhedral elements with applications to computational electromagnetics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 677
EP  - 698
VL  - 50
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an/2015077/
DO  - 10.1051/m2an/2015077
LA  - en
ID  - M2AN_2016__50_3_677_0
ER  - 
%0 Journal Article
%A Codecasa, Lorenzo
%A Specogna, Ruben
%A Trevisan, Francesco
%T Geometrically defined basis functions for polyhedral elements with applications to computational electromagnetics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 677-698
%V 50
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an/2015077/
%R 10.1051/m2an/2015077
%G en
%F M2AN_2016__50_3_677_0
Codecasa, Lorenzo; Specogna, Ruben; Trevisan, Francesco. Geometrically defined basis functions for polyhedral elements with applications to computational electromagnetics. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue – Polyhedral discretization for PDE, Tome 50 (2016) no. 3, pp. 677-698. doi : 10.1051/m2an/2015077. http://archive.numdam.org/articles/10.1051/m2an/2015077/

P. Alotto and L. Codecasa, A FIT Formulation of Bianisotropic Materials Over Polyhedral Grids. IEEE Trans. Magn. 50 (2014) 7008504. | DOI

L. Beirao Da Veiga, A residual based error estimator for the Mimetic Finite Difference method. Numer. Math. 108 (2008) 387–406. | DOI | MR | Zbl

L. Beirao Da Veiga, V. Gyrya, K. Lipnikov and G. Manzini, Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228 (2009) 7215–7232. | DOI | MR | Zbl

J. Bonelle and A. Ern, Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes. ESAIM: M2AN 48 (2014) 553–581. | DOI | Numdam | MR | Zbl

J. Bonelle, D.A. Di Pietro and A. Ern, Low-order reconstruction operators on polyhedral meshes: Application to Compatible Discrete Operator schemes. Comput. Aid. Geom. Des. 35–36 (2015) 27–41. | DOI | MR | Zbl

A. Bossavit, On the geometry of electromagnetism. 4: Maxwell’s house. J. Japan Soc. Appl. Electromagn. Mech. 6 (1998) 318–326.

A. Bossavit, Computational electromagnetism and geometry. 5: The Galerkin hodge. J. Japan Soc. Appl. Electromagn. Mech. 2 (2000) 203–209.

A. Bossavit, Generalized Finite Differences in Computational Electromagnetics. Progress in Electromagnetics Research. Vol. 32 of PIER 32, edited by F.L. Teixeira. EMW, Cambridge, Ma (2001) 45–64.

A. Bossavit and L. Kettunen, Yee-like schemes on staggered cellular Grids: A synthesis between FIT and FEM approaches. IEEE Trans. Mag. 36 (2000) 861–867. | DOI

F. Brezzi and A. Buffa, Innovative mimetic discretizations for electromagnetic problems. J. Comput. Appl. Math. 234 (2010) 1980–1987. | DOI | MR | Zbl

S.H. Christiansen, A construction of spaces of compatible differential forms on cellular complexes. Math. Models Methods Appl. Sci. 18 (2008) 739–757. | DOI | MR | Zbl

J.C. Campbell and M.J. Shashkov, A Tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172 (2001) 739–765. | DOI | MR | Zbl

M. Clemens and T. Weiland, Discrete Electromagnetism with the Finite Integration Technique. Vol. 32 of PIER, edited by F.L. Teixeira. EMW Publishing, Cambridge, Massachusetts, USA (2001) 65–87.

L. Codecasa and F. Trevisan, Piecewise uniform bases and energetic approach for discrete constitutive matrices in electromagnetic problems. Int. J. Numer. Meth. Eng. 65 (2006) 548–565. | DOI | MR | Zbl

L. Codecasa and F. Trevisan, Constitutive equations for discrete electromagnetic problems over polyhedral grids. J. Comput. Phys. 225 (2007) 1894–1918. | DOI | MR | Zbl

L. Codecasa, R. Specogna and F. Trevisan, Base functions and discrete constitutive relations for staggered polyhedral grids. Comput. Methods Appl. Mech. Engrg. 198 (2009) 1117–1123. | DOI | MR | Zbl

L. Codecasa, R. Specogna and F. Trevisan, Symmetric Positive-Definite Constitutive Matrices for Discrete Eddy-Current Problems. IEEE Trans. Mag. 43 (2007) 510–515. | DOI

L. Codecasa, R. Specogna and F. Trevisan, Discrete constitutive equations over hexahedral grids for eddy-current problems. CMES 1 (2008) 1–14. | MR | Zbl

L. Codecasa, R. Specogna and F. Trevisan, Subgridding to solving magnetostatics within Discrete Geometric Approach. IEEE Trans. Magn. 45 (2009) 1024–1027. | DOI

L. Codecasa, R. Specogna and F. Trevisan, A new set of basis functions for the Discrete Geometric Approach. J. Comput. Phys. 229 (2010) 7401–7410. | DOI | MR | Zbl

P. Dlotko and R. Specogna, Efficient generalized source field computation for h-oriented magnetostatic formulations. Eur. Phys. J. Appl. Phys. 53 (2011) 20801. | DOI

T. Euler, Consistent Discretization of Maxwell’s Equations on Polyhedral Grids. Ph. D. thesis, TU Darmstadt, Darmstadt, Germany (2007).

R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. | DOI | MR | Zbl

F. Henrotte, R. Specogna and F. Trevisan, Reinterpretation of the nodal force method within Discrete Geometric Approaches. IEEE Trans. Magn. 44 (2008) 690–693. | DOI

Y. Kuznetsov and S. Repin, Mixed Finite Element Method on Polygonal and Polyhedral Meshes. Numer. math. Adv. Appl. Springer, Berlin (2004) 615–622. | MR | Zbl

I. Lindell, Methods for Electromaghnetic Field Analysis. IEEE Press, Piscataway, NJ, USA (1992).

M. Marrone, Properties of Constitutive Matrices for Electrostatic and Magnetostatic Problems. IEEE Trans. Mag. 40 (2004) 1516–1520. | DOI

J.C. Nedelec, Mixed finite elements in R 3 . Numer. Math. 35 (1980) 315–341. | DOI | MR | Zbl

J.C. Nedelec, A new family of mixed finite elements in R3. Numer. Math. 50 (1986) 57–81. | DOI | MR | Zbl

T. Tarhasaari, L. Kettunen and A. Bossavit, Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques [for EM field analysis]. IEEE Trans. Magn. 35 (1999) 1494–1497. | DOI

E. Tonti, Finite Formulation of the Electromagnetic Field. IEEE Trans. Mag. 38 (2002) 333–336. | DOI

K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (1966) 302–307. | DOI | Zbl

Cité par Sources :